6,515 research outputs found

    The Non-Archimedean Theory of Discrete Systems

    Full text link
    In the paper, we study behavior of discrete dynamical systems (automata) w.r.t. transitivity; that is, speaking loosely, we consider how diverse may be behavior of the system w.r.t. variety of word transformations performed by the system: We call a system completely transitive if, given arbitrary pair a,ba,b of finite words that have equal lengths, the system A\mathfrak A, while evolution during (discrete) time, at a certain moment transforms aa into bb. To every system A\mathfrak A, we put into a correspondence a family FA\mathcal F_{\mathfrak A} of continuous maps of a suitable non-Archimedean metric space and show that the system is completely transitive if and only if the family FA\mathcal F_{\mathfrak A} is ergodic w.r.t. the Haar measure; then we find easy-to-verify conditions the system must satisfy to be completely transitive. The theory can be applied to analyze behavior of straight-line computer programs (in particular, pseudo-random number generators that are used in cryptography and simulations) since basic CPU instructions (both numerical and logical) can be considered as continuous maps of a (non-Archimedean) metric space Z2\mathbb Z_2 of 2-adic integers.Comment: The extended version of the talk given at MACIS-201

    Preperiodic points and unlikely intersections

    Full text link
    In this article, we combine complex-analytic and arithmetic tools to study the preperiodic points of one-dimensional complex dynamical systems. We show that for any fixed complex numbers a and b, and any integer d at least 2, the set of complex numbers c for which both a and b are preperiodic for z^d+c is infinite if and only if a^d = b^d. This provides an affirmative answer to a question of Zannier, which itself arose from questions of Masser concerning simultaneous torsion sections on families of elliptic curves. Using similar techniques, we prove that if two complex rational functions f and g have infinitely many preperiodic points in common, then they must have the same Julia set. This generalizes a theorem of Mimar, who established the same result assuming that f and g are defined over an algebraic extension of the rationals. The main arithmetic ingredient in the proofs is an adelic equidistribution theorem for preperiodic points over number fields and function fields, with non-archimedean Berkovich spaces playing an essential role.Comment: 26 pages. v3: Final version to appear in Duke Math.
    • …
    corecore