8 research outputs found

    Thirty-seven years of relational Hoare logic: remarks on its principles and history

    Full text link
    Relational Hoare logics extend the applicability of modular, deductive verification to encompass important 2-run properties including dependency requirements such as confidentiality and program relations such as equivalence or similarity between program versions. A considerable number of recent works introduce different relational Hoare logics without yet converging on a core set of proof rules. This paper looks backwards to little known early work. This brings to light some principles that clarify and organize the rules as well as suggesting a new rule and a new notion of completeness.Comment: A version appears in proceedings of ISOLA 2020. Version2: fix typos, minor clarifications, add a citation. Version3: copy edits, add citations on completeness. Version 4: minor corrections. Version 5: restore missing precond in loop rul

    Securing Verified IO Programs Against Unverified Code in F*

    Full text link
    We introduce SCIO*, a formally secure compilation framework for statically verified partial programs performing input-output (IO). The source language is an F* subset in which a verified program interacts with its IO-performing context via a higher-order interface that includes refinement types as well as pre- and post-conditions about past IO events. The target language is a smaller F* subset in which the compiled program is linked with an adversarial context that has an interface without refinement types, pre-conditions, or concrete post-conditions. To bridge this interface gap and make compilation and linking secure we propose a formally verified combination of higher-order contracts and reference monitoring for recording and controlling IO operations. Compilation uses contracts to convert the logical assumptions the program makes about the context into dynamic checks on each context-program boundary crossing. These boundary checks can depend on information about past IO events stored in the state of the monitor. But these checks cannot stop the adversarial target context before it performs dangerous IO operations. Therefore linking in SCIO* additionally forces the context to perform all IO actions via a secure IO library, which uses reference monitoring to dynamically enforce an access control policy before each IO operation. We prove in F* that SCIO* soundly enforces a global trace property for the compiled verified program linked with the untrusted context. Moreover, we prove in F* that SCIO* satisfies by construction Robust Relational Hyperproperty Preservation, a very strong secure compilation criterion. Finally, we illustrate SCIO* at work on a simple web server example.Comment: POPL'24 camera-ready versio

    The Next 700 Relational Program Logics

    No full text
    International audienceWe propose the first framework for defining relational program logics for arbitrary monadic effects. The framework is embedded within a relational dependent type theory and is highly expressive. At the semantic level, we provide an algebraic presentation of relational specifications as a class of relative monads, and link computations and specifications by introducing relational effect observations, which map pairs of monadic computations to relational specifications in a way that respects the algebraic structure. For an arbitrary relational effect observation, we generically define the core of a sound relational program logic, and explain how to complete it to a full-fledged logic for the monadic effect at hand. We show that this generic framework can be used to define relational program logics for effects as diverse as state, input-output, nondeterminism, and discrete probabilities. We, moreover, show that by instantiating our framework with state and unbounded iteration we can embed a variant of Benton's Relational Hoare Logic, and also sketch how to reconstruct Relational Hoare Type Theory. Finally, we identify and overcome conceptual challenges that prevented previous relational program logics from properly dealing with control effects, and are the first to provide a relational program logic for exceptions

    The Next 700 Relational Program Logics

    No full text
    International audienceWe propose the first framework for defining relational program logics for arbitrary monadic effects. The framework is embedded within a relational dependent type theory and is highly expressive. At the semantic level, we provide an algebraic presentation of relational specifications as a class of relative monads, and link computations and specifications by introducing relational effect observations, which map pairs of monadic computations to relational specifications in a way that respects the algebraic structure. For an arbitrary relational effect observation, we generically define the core of a sound relational program logic, and explain how to complete it to a full-fledged logic for the monadic effect at hand. We show that this generic framework can be used to define relational program logics for effects as diverse as state, input-output, nondeterminism, and discrete probabilities. We, moreover, show that by instantiating our framework with state and unbounded iteration we can embed a variant of Benton's Relational Hoare Logic, and also sketch how to reconstruct Relational Hoare Type Theory. Finally, we identify and overcome conceptual challenges that prevented previous relational program logics from properly dealing with control effects, and are the first to provide a relational program logic for exceptions
    corecore