2 research outputs found

    The Newton Scheme for Deep Learning

    Full text link
    We introduce a neural network (NN) strictly governed by Newton's Law, with the nature required basis functions derived from the fundamental classic mechanics. Then, by classifying the training model as a quick procedure of 'force pattern' recognition, we developed the Newton physics-based NS scheme. Once the force pattern is confirmed, the neuro network simply does the checking of the 'pattern stability' instead of the continuous fitting by computational resource consuming big data-driven processing. In the given physics's law system, once the field is confirmed, the mathematics bases for the force field description actually are not diverged but denumerable, which can save the function representations from the exhaustible available mathematics bases. In this work, we endorsed Newton's Law into the deep learning technology and proposed Newton Scheme (NS). Under NS, the user first identifies the path pattern, like the constant acceleration movement.The object recognition technology first loads mass information, then, the NS finds the matched physical pattern and describe and predict the trajectory of the movements with nearly zero error. We compare the major contribution of this NS with the TCN, GRU and other physics inspired 'FIND-PDE' methods to demonstrate fundamental and extended applications of how the NS works for the free-falling, pendulum and curve soccer balls.The NS methodology provides more opportunity for the future deep learning advances.Comment: 7 pages, 10 figure

    Symmetrical Graph Neural Network for Quantum Chemistry, with Dual R/K Space

    Full text link
    Most of current neural network models in quantum chemistry (QC) exclude the molecular symmetry, separate the well-correlated real space (R space), and momenta space (K space) into two individuals, which lack the essential physics in molecular chemistry. In this work, by endorsing the molecular symmetry and elementals of group theory, we propose a comprehensive method to apply symmetry in the graph neural network (SY-GNN), which extends the property-predicting coverage to all the orbital symmetry for both ground and excited states. SY-GNN shows excellent performance in predicting both the absolute and relative of R and K spaces quantities. Besides the numerical properties, SY-GNN also can predict the orbitals distributions in real space, providing the active regions of chemical reactions. We believe the symmetry endorsed deep learning scheme covers the significant physics inside and is essential for the application of neural networks in QC and many other research fields in the future
    corecore