3,786 research outputs found
Quantum Zeno Features of Bistable Perception
A generalized quantum theoretical framework, not restricted to the validity
domain of standard quantum physics, is used to model the dynamics of the
bistable perception of ambiguous visual stimuli. The central idea is to treat
the perception process in terms of the evolution of an unstable two-state
quantum system, yielding a quantum Zeno type of effect. A quantitative relation
between the involved time scales is theoretically derived. This relation is
found to be satisfied by empirically obtained cognitive time scales relevant
for bistable perception.Comment: 19 pages, 1 figur
I, NEURON: the neuron as the collective
Purpose – In the last half-century, individual sensory neurons have been bestowed with characteristics of the whole human being, such as behavior and its oft-presumed precursor, consciousness. This anthropomorphization is pervasive in the literature. It is also absurd, given what we know about neurons, and it needs to be abolished. This study aims to first understand how it happened, and hence why it persists.
          Design/methodology/approach – The peer-reviewed sensory-neurophysiology literature extends to hundreds (perhaps thousands) of papers. Here, more than 90 mainstream papers were scrutinized.
          Findings – Anthropomorphization arose because single neurons were cast as “observers” who “identify”, “categorize”, “recognize”, “distinguish” or “discriminate” the stimuli, using math-based algorithms that reduce (“decode”) the stimulus-evoked spike trains to the particular stimuli inferred to elicit them. Without “decoding”, there is supposedly no perception. However, “decoding” is both unnecessary and unconfirmed. The neuronal “observer” in fact consists of the laboratory staff and the greater society that supports them. In anthropomorphization, the neuron becomes the collective.
          Research limitations/implications – Anthropomorphization underlies the widespread application to neurons Information Theory and Signal Detection Theory, making both approaches incorrect.
          Practical implications – A great deal of time, money and effort has been wasted on anthropomorphic Reductionist approaches to understanding perception and consciousness. Those resources should be diverted into more-fruitful approaches.
          Originality/value – A long-overdue scrutiny of sensory-neuroscience literature reveals that anthropomorphization, a form of Reductionism that involves the presumption of single-neuron consciousness, has run amok in neuroscience. Consciousness is more likely to be an emergent property of the brain
Probabilistic representations in perception: Are there any, and what would they be?
Nick Shea’s Representation in Cognitive Science commits
          him to representations in perceptual processing that are
          about probabilities. This commentary concerns how to
          adjudicate between this view and an alternative that locates
          the probabilities rather in the representational states’
          associated “attitudes”. As background and motivation,
          evidence for probabilistic representations in perceptual
          processing is adduced, and it is shown how, on either
          conception, one can address a specific challenge Ned Block
          has raised to this evidence
Models for the Effects of G-seat Cuing on Roll-axis Tracking Performance
Including whole-body motion in a flight simulator improves performance for a variety of tasks requiring a pilot to compensate for the effects of unexpected disturbances. A possible mechanism for this improvement is that whole-body motion provides high derivative vehicle state information whic allows the pilot to generate more lead in responding to the external disturbances. During development of motion simulating algorithms for an advanced g-cuing system it was discovered that an algorithm based on aircraft roll acceleration producted little or no performance improvement. On the other hand, algorithms based on roll position or roll velocity produced performance equivalent to whole-body motion. The analysis and modeling conducted at both the sensory system and manual control performance levels to explain the above results are described
A predictive processing theory of sensorimotor contingencies: explaining the puzzle of perceptual presence and its absence in synesthesia
Normal perception involves experiencing objects within perceptual scenes as real, as existing in the world. This property of “perceptual presence” has motivated “sensorimotor theories” which understand perception to involve the mastery of sensorimotor contingencies. However, the mechanistic basis of sensorimotor contingencies and their mastery has remained unclear. Sensorimotor theory also struggles to explain instances of perception, such as synesthesia, that appear to lack perceptual presence and for which relevant sensorimotor contingencies are difficult to identify. On alternative “predictive processing” theories, perceptual content emerges from probabilistic inference on the external causes of sensory signals, however, this view has addressed neither the problem of perceptual presence nor synesthesia. Here, I describe a theory of predictive perception of sensorimotor contingencies which (1) accounts for perceptual presence in normal perception, as well as its absence in synesthesia, and (2) operationalizes the notion of sensorimotor contingencies and their mastery. The core idea is that generative models underlying perception incorporate explicitly counterfactual elements related to how sensory inputs would change on the basis of a broad repertoire of possible actions, even if those actions are not performed. These “counterfactually-rich” generative models encode sensorimotor contingencies related to repertoires of sensorimotor dependencies, with counterfactual richness determining the degree of perceptual presence associated with a stimulus. While the generative models underlying normal perception are typically counterfactually rich (reflecting a large repertoire of possible sensorimotor dependencies), those underlying synesthetic concurrents are hypothesized to be counterfactually poor. In addition to accounting for the phenomenology of synesthesia, the theory naturally accommodates phenomenological differences between a range of experiential states including dreaming, hallucination, and the like. It may also lead to a new view of the (in)determinacy of normal perception
Visual Learning In The Perception Of Texture: Simple And Contingent Aftereffects Of Texture Density
Novel results elucidating the magnitude, binocularity and retinotopicity of aftereffects of visual texture density adaptation are reported as is a new contingent aftereffect of texture density which suggests that the perception of visual texture density is quite malleable. Texture aftereffects contingent upon orientation, color and temporal sequence are discussed. A fourth effect is demonstrated in which auditory contingencies are shown to produce a different kind of visual distortion. The merits and limitations of error-correction and classical conditioning theories of contingent adaptation are reviewed. It is argued that a third kind of theory which emphasizes coding efficiency and informational considerations merits close attention. It is proposed that malleability in the registration of texture information can be understood as part of the functional adaptability of perception
Mach Bands: How Many Models are Possible? Recent Experiemental Findings and Modeling Attempts
Mach bands are illusory bright and dark bands seen where a luminance plateau meets a ramp, as in half-shadows or penumbras. A tremendous amount of work has been devoted to studying the psychophysics and the potential underlying neural circuitry concerning this phenomenon. A number of theoretical models have also been proposed, originating in the seminal studies of Mach himself. The present article reviews the main experimental findings after 1965 and the main recent theories of early vision that have attempted to discount for the effect. It is shown that the different theories share working principles and can be grouped in three clsses: a) feature-based; b) rule-based; and c) filling-in. In order to evaluate individual proposals it is necessary to consider them in the larger picture of visual science and to determine how they contribute to the understanding of vision in general.Air Force Office of Scientific Research (F49620-92-J-0334); Office of Naval Research (N00014-J-4100); COPPE/UFRJ, Brazi
- …
