1,272 research outputs found
The Moon as a photometric calibration standard for microwave sensors
Instruments on satellites for Earth observation on polar orbits usually employ a two-point calibration technique, in which deep space and an onboard calibration target provide two reference flux levels. As the direction of the deep-space view is in general close to the celestial equator, the Moon sometimes moves through the field of view and introduces an unwelcome additional signal. One can take advantage of this intrusion, however, by using the Moon as a third flux standard, and this has actually been done for checking the lifetime stability of sensors operating at visible wavelengths. As the disk-integrated thermal emission of the Moon is less well known than its reflected sunlight, this concept can in the microwave range only be used for stability checks and intercalibration. An estimate of the frequency of appearances of the Moon in the deep-space view, a description of the limiting factors of the measurement accuracy and models of the Moon's brightness, and a discussion of the benefits from complementing the naturally occurring appearances of the Moon with dedicated spacecraft maneuvers show that it would be possible to detect photometric lifetime drifts of a few percent with just two measurements. The pointing accuracy is the most crucial factor for the value of this method. Planning such observations in advance would be particularly beneficial, because it allows observing the Moon at well-defined phase angles and putting it at the center of the field of view. A constant phase angle eliminates the need for a model of the Moon's brightness when checking the stability of an instrument. With increasing spatial resolution of future microwave sensors another question arises, viz. to what extent foreground emission from objects other than the Moon will contaminate the flux entering the deep-space view, which is supposed to originate exclusively in the cosmic microwave background. We conclude that even the brightest discreet sources have flux densities below the detection limit of microwave sensors in a single scan
Vision technology/algorithms for space robotics applications
The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed
Observation requirements for unmanned planetary missions, part 2
Observation requirements for unmanned planetary mission
Workshop on Advanced Technologies for Planetary Instruments, part 1
This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments
Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy
The Supernova / Acceleration Probe (SNAP) is a proposed space-based
experiment designed to study the dark energy and alternative explanations of
the acceleration of the Universe's expansion by performing a series of
complementary systematics-controlled measurements. We describe a
self-consistent reference mission design for building a Type Ia supernova
Hubble diagram and for performing a wide-area weak gravitational lensing study.
A 2-m wide-field telescope feeds a focal plane consisting of a 0.7
square-degree imager tiled with equal areas of optical CCDs and near infrared
sensors, and a high-efficiency low-resolution integral field spectrograph. The
SNAP mission will obtain high-signal-to-noise calibrated light-curves and
spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A
wide-field survey covering one thousand square degrees resolves ~100 galaxies
per square arcminute. If we assume we live in a cosmological-constant-dominated
Universe, the matter density, dark energy density, and flatness of space can
all be measured with SNAP supernova and weak-lensing measurements to a
systematics-limited accuracy of 1%. For a flat universe, the
density-to-pressure ratio of dark energy can be similarly measured to 5% for
the present value w0 and ~0.1 for the time variation w'. The large survey area,
depth, spatial resolution, time-sampling, and nine-band optical to NIR
photometry will support additional independent and/or complementary dark-energy
measurement approaches as well as a broad range of auxiliary science programs.
(Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go
The Australian Space Eye: studying the history of galaxy formation with a CubeSat
The Australian Space Eye is a proposed astronomical telescope based on a 6U
CubeSat platform. The Space Eye will exploit the low level of systematic errors
achievable with a small space based telescope to enable high accuracy
measurements of the optical extragalactic background light and low surface
brightness emission around nearby galaxies. This project is also a demonstrator
for several technologies with general applicability to astronomical
observations from nanosatellites. Space Eye is based around a 90 mm aperture
clear aperture all refractive telescope for broadband wide field imaging in the
i and z bands.Comment: 19 pages, 14 figures, submitted for publication as Proc. SPIE 9904,
9904-56 (SPIE Astronomical Telescopes & Instrumentation 2016
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
Space programs summary no. 37-29, volume VI FOR the period July 1, 1964 to August 31, 1964. Space exploration programs and space sciences
Summaries covering system development and operations of Ranger VII, Surveyor, and Mariner spacecraft, and engineering development at deep space network facilitie
eROSITA Science Book: Mapping the Structure of the Energetic Universe
eROSITA is the primary instrument on the Russian SRG mission. In the first
four years of scientific operation after its launch, foreseen for 2014, it will
perform a deep survey of the entire X-ray sky. In the soft X-ray band (0.5-2
keV), this will be about 20 times more sensitive than the ROSAT all sky survey,
while in the hard band (2-10 keV) it will provide the first ever true imaging
survey of the sky at those energies. Such a sensitive all-sky survey will
revolutionize our view of the high-energy sky, and calls for major efforts in
synergic, multi-wavelength wide area surveys in order to fully exploit the
scientific potential of the X-ray data. The design-driving science of eROSITA
is the detection of very large samples (~10^5 objects) of galaxy clusters out
to redshifts z>1, in order to study the large scale structure in the Universe,
test and characterize cosmological models including Dark Energy. eROSITA is
also expected to yield a sample of around 3 millions Active Galactic Nuclei,
including both obscured and un-obscured objects, providing a unique view of the
evolution of supermassive black holes within the emerging cosmic structure. The
survey will also provide new insights into a wide range of astrophysical
phenomena, including accreting binaries, active stars and diffuse emission
within the Galaxy, as well as solar system bodies that emit X-rays via the
charge exchange process. Finally, such a deep imaging survey at high spectral
resolution, with its scanning strategy sensitive to a range of variability
timescales from tens of seconds to years, will undoubtedly open up a vast
discovery space for the study of rare, unpredicted, or unpredictable
high-energy astrophysical phenomena. In this living document we present a
comprehensive description of the main scientific goals of the mission, with
strong emphasis on the early survey phases.Comment: 84 Pages, 52 Figures. Published online as MPE document. Edited by S.
Allen. G. Hasinger and K. Nandra. Few minor corrections (typos) and updated
reference
Publications of the Jet Propulsion Laboratory, July 1964 through June 1965
JPL publications bibliography with abstracts - reports on DSIF, Mariner program, Ranger project, Surveyor project, and other space programs, and space science
- …
