1,719 research outputs found

    Stability properties and asymptotics for N non-minimally coupled scalar fields cosmology

    Full text link
    We consider here the dynamics of some homogeneous and isotropic cosmological models with NN interacting classical scalar fields non-minimally coupled to the spacetime curvature, as an attempt to generalize some recent results obtained for one and two scalar fields. We show that a Lyapunov function can be constructed under certain conditions for a large class of models, suggesting that chaotic behavior is ruled out for them. Typical solutions tend generically to the empty de Sitter (or Minkowski) fixed points, and the previous asymptotic results obtained for the one field model remain valid. In particular, we confirm that, for large times and a vanishing cosmological constant, even in the presence of the extra scalar fields, the universe tends to an infinite diluted matter dominated era.Comment: 10 page

    Stability of inflationary solutions driven by a changing dissipative fluid

    Get PDF
    In this paper the second Lyapunov method is used to study the stability of the de Sitter phase of cosmic expansion when the source of the gravitational field is a viscous fluid. Different inflationary scenarios related with reheating and decay of mini-blackholes into radiation are investigated using an effective fluid described by time--varying thermodynamical quantities.Comment: 17 pages, LaTeX 2.09, 2 figures. To be published in Classical and Quantum Gravit

    Chaotic dynamics in preheating after inflation

    Full text link
    We study chaotic dynamics in preheating after inflation in which an inflaton ϕ\phi is coupled to another scalar field χ\chi through an interaction (1/2)g2ϕ2χ2(1/2)g^2\phi^2\chi^2. We first estimate the size of the quasi-homogeneous field χ\chi at the beginning of reheating for large-field inflaton potentials V(ϕ)=V0ϕnV(\phi)=V_0\phi^n by evaluating the amplitude of the χ\chi fluctuations on scales larger than the Hubble radius at the end of inflation. Parametric excitations of the field χ\chi during preheating can give rise to chaos between two dynamical scalar fields. For the quartic potential (n=4n=4, V0=λ/4V_0=\lambda/4) chaos actually occurs for g2/λ<O(10)g^2/\lambda <{\cal O}(10) in a linear regime before which the backreaction of created particles becomes important. This analysis is supported by several different criteria for the existence of chaos. For the quadratic potential (n=2n=2) the signature of chaos is not found by the time at which the backreaction begins to work, similar to the case of the quartic potential with g2/λ1g^2/\lambda \gg 1.Comment: 12 pages, 10 figures, Version to appear in Classical and Quantum Gravit

    Adaptive ℋ∞-control for nonlinear systems: a dissipation theoretical approach

    Get PDF
    The adaptive ℋ∞-control problem for parameter-dependent nonlinear systems with full information feedback is considered. The techniques from dissipation theory as well as the vector and parameter projection methods are used to derive the adaptive ℋ∞-control laws. Both of the projection techniques are rigorously treated. The adaptive robust stabilization for nonlinear systems with ℒ2-gain hounded uncertainties is investigated
    corecore