1,473 research outputs found

    The Maximum Scatter TSP on a Regular Grid

    Get PDF
    In the maximum scatter traveling salesman problem the objective is to find a tour that maximizes the shortest distance between any two consecutive nodes. This model can be applied to manufacturing processes, particularly laser melting processes. We extend an algorithm by Arkin et al. that yields optimal solutions for nodes on a line to a regular m×nm \times n-grid. The new algorithm \textsc{Weave}(m,n) takes linear time to compute an optimal tour in some cases. It is asymptotically optimal and a 105\frac{\sqrt{10}}{5}-approximation for the 3×43\times 4-grid, which is the worst case.Comment: 6 pages, 2 figures; to appear in OR Proceedings 201

    Maximum Scatter TSP in Doubling Metrics

    Full text link
    We study the problem of finding a tour of nn points in which every edge is long. More precisely, we wish to find a tour that visits every point exactly once, maximizing the length of the shortest edge in the tour. The problem is known as Maximum Scatter TSP, and was introduced by Arkin et al. (SODA 1997), motivated by applications in manufacturing and medical imaging. Arkin et al. gave a 0.50.5-approximation for the metric version of the problem and showed that this is the best possible ratio achievable in polynomial time (assuming PNPP \neq NP). Arkin et al. raised the question of whether a better approximation ratio can be obtained in the Euclidean plane. We answer this question in the affirmative in a more general setting, by giving a (1ϵ)(1-\epsilon)-approximation algorithm for dd-dimensional doubling metrics, with running time O~(n3+2O(KlogK))\tilde{O}\big(n^3 + 2^{O(K \log K)}\big), where K(13ϵ)dK \leq \left( \frac{13}{\epsilon} \right)^d. As a corollary we obtain (i) an efficient polynomial-time approximation scheme (EPTAS) for all constant dimensions dd, (ii) a polynomial-time approximation scheme (PTAS) for dimension d=loglogn/cd = \log\log{n}/c, for a sufficiently large constant cc, and (iii) a PTAS for constant dd and ϵ=Ω(1/loglogn)\epsilon = \Omega(1/\log\log{n}). Furthermore, we show the dependence on dd in our approximation scheme to be essentially optimal, unless Satisfiability can be solved in subexponential time

    The Hunt for Exomoons with Kepler (HEK): II. Analysis of Seven Viable Satellite-Hosting Planet Candidates

    Full text link
    From the list of 2321 transiting planet candidates announced by the Kepler Mission, we select seven targets with favorable properties for the capacity to dynamically maintain an exomoon and present a detectable signal. These seven candidates were identified through our automatic target selection (TSA) algorithm and target selection prioritization (TSP) filtering, whereby we excluded systems exhibiting significant time-correlated noise and focussed on those with a single transiting planet candidate of radius less than 6 Earth radii. We find no compelling evidence for an exomoon around any of the seven KOIs but constrain the satellite-to-planet mass ratios for each. For four of the seven KOIs, we estimate a 95% upper quantile of M_S/M_P<0.04, which given the radii of the candidates, likely probes down to sub-Earth masses. We also derive precise transit times and durations for each candidate and find no evidence for dynamical variations in any of the KOIs. With just a few systems analyzed thus far in the in-going HEK project, projections on eta-moon would be premature, but a high frequency of large moons around Super-Earths/Mini-Neptunes would appear to be incommensurable with our results so far.Comment: 32 pages, 11 figures, 23 tables, Accepted to Ap

    REM near-IR and optical photometric monitoring of Pre-Main Sequence Stars in Orion

    Full text link
    We performed an intensive photometric monitoring of the PMS stars falling in a field of about 10x10 arc-minutes in the vicinity of the Orion Nebula Cluster (ONC). Photometric data were collected between November 2006 and January 2007 with the REM telescope in the VRIJHK' bands. The largest number of observations is in the I band (about 2700 images) and in J and H bands (about 500 images in each filter). From the observed rotational modulation, induced by the presence of surface inhomogeneities, we derived the rotation periods for 16 stars and improved previous determinations for the other 13. The analysis of the spectral energy distributions and, for some stars, of high-resolution spectra provided us with the main stellar parameters (luminosity, effective temperature, mass, age, and vsini). We also report the serendipitous detection of two strong flares in two of these objects. In most cases, the light-curve amplitudes decrease progressively from the R to H band as expected for cool starspots, while in a few cases, they can only be modelled by the presence of hot spots, presumably ascribable to magnetospheric accretion. The application of our own spot model to the simultaneous light curves in different bands allowed us to deduce the spot parameters and particularly to disentangle the spot temperature and size effects on the observed light curves.Comment: 29 pages, 24 figure

    Big data clustering using grid computing and ant-based algorithm

    Get PDF
    Big data has the power to dramatically change the way institutes and organizations use their data. Transforming the massive amounts of data into knowledge will leverage the organizations performance to the maximum.Scientific and business organizations would benefit from utilizing big data. However, there are many challenges in dealing with big data such as storage, transfer, management and manipulation of big data.Many techniques are required to explore the hidden pattern inside the big data which have limitations in terms of hardware and software implementation. This paper presents a framework for big data clustering which utilizes grid technology and ant-based algorithm

    The development of an experimental technique to measure the influence of temperature on the mechanical properties of weldments

    Get PDF
    In large industries, such as in power stations, welds are widely employed to join different components together to meet various property requirements. The thermal gradient that develops during welding causes an inhomogeneous distribution of material properties, in areas adjacent to the weld, known as the Heat Affected Zones (HAZ). Welded joints subjected to elevated temperatures and loads during operations often experience a degradation of mechanical properties and performance of the joint. Studies have found that mechanical phenomena’s such as, fatigue and creep have compromised the structural integrity of weld zones. In essence a welded component acts as a composite material, for which it’s overall performance is dependent on its weakest material component. This study focuses on developing an experimental technique that is capable of measuring the influence of temperature on the mechanical and material properties across a weldment. The development of the experimental technique includes the design and optimisation of the hot zone of a welded tensile specimen, identification and characterisation of the different weld zones as well as, refining a strain recording strategy to detect the localised strains in each of the different weld zones. The application of the experimental technique is applied to welded components from turbine steam penetrations, which were extracted from a coal fired power station. The steam penetrations are a low Cr structural steel; (Cr 0.66, C 0.24 by wt. %) and have been in service for approximately 24 year (± 212 000 hrs). Two primary systems namely the Gleeble 3800 thermo-mechanical simulator and digital image correlation are used in this study. In order to accurately map the in-service evolution of material properties, each of the welds were mechanically loaded in tension and exposed to elevated operating temperatures. To induce mechanical loading at constant elevated temperatures, a Gleeble 3800 thermo-mechanical simulator with a tensile module was used to deform specimens at a strain rate of 50 µε.s1 . Experiments were conducted at various temperatures, ranging from room temperature (RT) to 535 o C. The evolution of material properties across the weldment was evaluated using Digital Image Correlation (DIC). DIC is a non-contact digital technique, capable of measuring localized strain during mechanical loading at elevated temperatures. In order to investigate the localized strain across the different weld zones, virtual strain gauges of one millimetre in length were simulated at intervals of one millimetre. It was found that there was a continuous accumulation of strain from the Fusion Line (FL) into the Parent Material (PM). This finding suggested that the HAZ nearest to the PM; which was the Fine Grained Heat Affected Zone (FGHAZ) was the weakest zone as it strained the most. The FL was found to be the least ductile region of the weld as most of the absorbed thermal energy provided during the welding process was used for strain hardening. At elevated temperatures, localised strain occurred at lower strain values than those at RT. This finding suggested that at elevated temperatures there was more thermal energy available for dislocation activation and mobilization. The influence of temperature on the local weld zones were evaluated by extending a specimen, containing just the parent material. A simulation of a virtual strain gauge across the monolithic specimen’s gauge length, revealed that necking occurred at the centre of the specimen which corresponded to the hot zone. In contrast, a simulation of virtual strain gauges across both welds revealed that necking occurred in the region between the HAZ and weld material. This finding inferred that the presence of a weld reduced the strength of the component, as the weld material was the weakest material. Furthermore, the in-service operating conditions was found to have significantly influenced the material behaviour of the welds. A weld that was exposed to a more elevated temperatures and loads, was found to have undergone a higher degree of material degradation, and strained to a larger extent when compared to a weld that was exposed to a more moderate operating environment
    corecore