7 research outputs found

    Counting and computing regions of DD-decomposition: algebro-geometric approach

    Full text link
    New methods for DD-decomposition analysis are presented. They are based on topology of real algebraic varieties and computational real algebraic geometry. The estimate of number of root invariant regions for polynomial parametric families of polynomial and matrices is given. For the case of two parametric family more sharp estimate is proven. Theoretic results are supported by various numerical simulations that show higher precision of presented methods with respect to traditional ones. The presented methods are inherently global and could be applied for studying DD-decomposition for the space of parameters as a whole instead of some prescribed regions. For symbolic computations the Maple v.14 software and its package RegularChains are used.Comment: 16 pages, 8 figure

    Special Algorithm for Stability Analysis of Multistable Biological Regulatory Systems

    Full text link
    We consider the problem of counting (stable) equilibriums of an important family of algebraic differential equations modeling multistable biological regulatory systems. The problem can be solved, in principle, using real quantifier elimination algorithms, in particular real root classification algorithms. However, it is well known that they can handle only very small cases due to the enormous computing time requirements. In this paper, we present a special algorithm which is much more efficient than the general methods. Its efficiency comes from the exploitation of certain interesting structures of the family of differential equations.Comment: 24 pages, 5 algorithms, 10 figure

    Eigenvalue placement by quantifier elimination : the static output feedback problem

    Get PDF
    This contribution addresses the static output feedback problem of linear time-invariant systems. This is still an area of active research, in contrast to the observer-based state feedback problem, which has been solved decades ago. We consider the formulation and solution of static output feedback design problems using quantifier elimination techniques. Stabilization, as well as more specified eigenvalue placement scenarios, are the focus of the paper

    Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition

    Get PDF
    Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.Comment: 16 page
    corecore