3 research outputs found

    Modeling and Analyzing Reaction Systems in Maude

    Get PDF
    Reaction Systems (RSs) are a successful computational framework for modeling systems inspired by biochemistry. An RS defines a set of rules (reactions) over a finite set of entities (e.g., molecules, proteins, genes, etc.). A computation in this system is performed by rewriting a finite set of entities (a computation state) using all the enabled reactions in the RS, thereby producing a new set of entities (a new computation state). The number of entities in the reactions and in the computation states can be large, making the analysis of RS behavior difficult without a proper automated support. In this paper, we use the Maude language—a programming language based on rewriting logic—to define a formal executable semantics for RSs, which can be used to precisely simulate the system behavior as well as to perform reachability analysis over the system computation space. Then, by enriching the proposed semantics, we formalize a forward slicer algorithm for RSs that allows us to observe the evolution of the system on both the initial input and a fragment of it (the slicing criterion), thus facilitating the detection of forward causality and influence relations due to the absence/presence of some entities in the slicing criterion. The pursued approach is illustrated by a biological reaction system that models a gene regulation network for controlling the process of differentiation of T helper lymphocytes

    The Many Roads to the Simulation of Reaction Systems

    No full text
    Reaction systems are a computational model inspired by the bio-chemical reactions that happen inside biological cells. They have been and currently are studied for their many nice theoretical properties. They are also a useful modeling tool for biochemical systems, but in order to be able to employ them effectively in the field the presence of efficient and widely available simulators is essential. Here we explore three different algorithms and implementations of the simulation, comparing them to the current state of the art. We also show that we can obtain performances comparable to GPU-based simulations on real-world systems by using a carefully tuned CPU-based simulator

    The Many Roads to the Simulation of Reaction Systems

    No full text
    corecore