63 research outputs found

    A compensating transaction example in twelve notations

    Get PDF
    The scenario of business computer systems changed with the advent of cross-entity computer interactions: computer systems no longer had the limited role of storing and processing data, but became themselves the players which actuated real-life actions. These advancements rendered the traditional transaction mechanism insufficient to deal with these new complexities of longer multi-party transactions. The concept of compensations has long been suggested as a solution, providing the possibility of executing “counter”-actions which semantically undo previously completed actions in case a transaction fails. There are numerous design options related to compensations particularly when deciding the strategy of ordering compensating actions. Along the years, various models which include compensations have emerged, each tackling in its own way these options. In this work, we review a number of notations which handle compensations by going through their syntax and semantics — highlighting the distinguishing features — and encoding a typical compensating transaction example in terms of each of these notations.peer-reviewe

    A formal approach to AADL model-based software engineering

    Get PDF
    Formal methods have become a recommended practice in safety-critical software engineering. To be formally verified, a system should be specified with a specific formalism such as Petri nets, automata and process algebras, which requires a formal expertise and may become complex especially with large systems. In this paper, we report our experience in the formal verification of safety-critical real-time systems. We propose a formal mapping for a real-time task model using the LNT language, and we describe how it is used for the integration of a formal verification phase in an AADL model-based development process. We focus on real-time systems with event-driven tasks, asynchronous communication and preemptive fixed-priority scheduling. We provide a complete tool-chain for the automatic model transformation and formal verification of AADL models. Experimentation illustrates our results with the Flight control system and Line follower robot case studies

    Independent verification of specification models for large software systems at the early phases of development lifecycle

    Get PDF
    One of the major challenges facing the software industry, in general and IV&V (Independent Verification and Validation) analysts in particular, is to find ways for analyzing dynamic behavior of requirement specifications of large software systems early in the development lifecycle. Such analysis can significantly improve the performance and reliability of the developed systems. This dissertation addresses the problem of developing an IV&V framework for extracting semantics of dynamic behavior from requirement specifications based on: (1) SART (Structured Analysis with Realtime) models, and (2) UML (Unified Modeling Language) models.;For SART, the framework presented here shows a direct mapping from SART specification models to CPN (Colored Petrinets) models. The semantics of the SART hierarchy at the individual levels are preserved in the mapping. This makes it easy for the analyst to perform the analysis and trace back to the corresponding SART model. CPN was selected because it supports rigorous dynamic analysis. A large scale case study based on a component of NASA EOS system was performed for a proof of the concept.;For UML specifications, an approach based on metamodels is presented. A special type of metamodel, called dynamic metamodel (DMM), is introduced. This approach holds several advantages over the direct mapping of UML to CPN. The mapping rules for generating DMM are not CPN specific, hence they would not change if a language other than CPN is used. Also it makes it more flexible to develop DMM because other types of models can be added to the existing UML models. A simple example of a pacemaker is used to illustrate the concepts of DMM

    Software Engineering and Petri Nets

    Get PDF
    This booklet contains the proceedings of the Workshop on Software Engineering and Petri Nets (SEPN), held on June 26, 2000. The workshop was held in conjunction with the 21st International Conference on Application and Theory of Petri Nets (ICATPN-2000), organised by the CPN group of the Department of Computer Science, University of Aarhus, Denmark. The SEPN workshop papers are available in electronic form via the web page:http://www.daimi.au.dk/pn2000/proceeding

    Analysis and Verification of Service Contracts

    Get PDF

    Automated specification-based testing of graphical user interfaces

    Get PDF
    Tese de doutoramento. Engenharia Electrónica e de Computadores. 2006. Faculdade de Engenharia. Universidade do Porto, Departamento de Informática, Escola de Engenharia. Universidade do Minh

    Conception Assistée des Logiciels Sécurisés pour les Systèmes Embarqués

    Get PDF
    A vast majority of distributed embedded systems is concerned by security risks. The fact that applications may result poorly protected is partially due to methodological lacks in the engineering development process. More specifically, methodologies targeting formal verification may lack support to certain phases of the development process. Particularly, system modeling frameworks may be complex-to-use or not address security at all. Along with that, testing is not usually addressed by verification methodologies since formal verification and testing are considered as exclusive stages. Nevertheless, we believe that platform testing can be applied to ensure that properties formally verified in a model are truly endowed to the real system. Our contribution is made in the scope of a model-driven based methodology that, in particular, targets secure-by-design embedded systems. The methodology is an iterative process that pursues coverage of several engineering development phases and that relies upon existing security analysis techniques. Still in evolution, the methodology is mainly defined via a high level SysML profile named Avatar. The contribution specifically consists on extending Avatar so as to model security concerns and in formally defining a model transformation towards a verification framework. This contribution allows to conduct proofs on authenticity and confidentiality. We illustrate how a cryptographic protocol is partially secured by applying several methodology stages. In addition, it is described how Security Testing was conducted on an embedded prototype platform within the scope of an automotive project.Une vaste majorité de systèmes embarqués distribués sont concernés par des risques de sécurité. Le fait que les applications peuvent être mal protégées est partiellement à cause des manques méthodologiques dans le processus d’ingénierie de développement. Particulièrement, les méthodologies qui ciblent la vérification formelle peuvent manquer de support pour certaines étapes du processus de développement SW. Notamment, les cadres de modélisation peuvent être complexes à utiliser ou ne pas adresser la sécurité du tout. Avec cela, l’étape de tests n’est pas normalement abordée par les méthodologies de vérification formelle. Néanmoins, nous croyons que faire des tests sur la plateforme peut aider à assurer que les propriétés vérifiées dans le modèle sont véritablement préservées par le système embarqué. Notre contribution est faite dans le cadre d’une méthodologie nommée Avatar qui est basée sur les modèles et vise la sécurité dès la conception du système. La méthodologie est un processus itératif qui poursuit la couverture de plusieurs étapes du développement SW et qui s’appuie sur plusieurs techniques d’analyse de sécurité. La méthodologie compte avec un cadre de modélisation SysML. Notre contribution consiste notamment à étendre le cadre de modélisation Avatar afin d’aborder les aspects de sécurité et aussi à définir une transformation du modèle Avatar vers un cadre de vérification formel. Cette contribution permet d’effectuer preuves d’authenticité et confidentialité. Nous montrons comment un protocole cryptographique est partiellement sécurisé. Aussi, il est décrit comment les tests de sécurité ont été menés sur un prototype dans le cadre d’un projet véhiculaire
    • …
    corecore