315,189 research outputs found

    The logic of epistemic justification

    Get PDF
    Theories of epistemic justification are commonly assessed by exploring their predictions about particular hypothetical cases – predictions as to whether justification is present or absent in this or that case. With a few exceptions, it is much less common for theories of epistemic justification to be assessed by exploring their predictions about logical principles. The exceptions are a handful of ‘closure’ principles, which have received a lot of attention, and which certain theories of justification are well known to invalidate. But these closure principles are only a small sample of the logical principles that we might consider. In this paper, I will outline four further logical principles that plausibly hold for justification and two which plausibly do not. While my primary aim is just to put these principles forward, I will use them to evaluate some different approaches to justification and (tentatively) conclude that a ‘normic’ theory of justification best captures its logic

    Explicit Evidence Systems with Common Knowledge

    Full text link
    Justification logics are epistemic logics that explicitly include justifications for the agents' knowledge. We develop a multi-agent justification logic with evidence terms for individual agents as well as for common knowledge. We define a Kripke-style semantics that is similar to Fitting's semantics for the Logic of Proofs LP. We show the soundness, completeness, and finite model property of our multi-agent justification logic with respect to this Kripke-style semantics. We demonstrate that our logic is a conservative extension of Yavorskaya's minimal bimodal explicit evidence logic, which is a two-agent version of LP. We discuss the relationship of our logic to the multi-agent modal logic S4 with common knowledge. Finally, we give a brief analysis of the coordinated attack problem in the newly developed language of our logic

    Subset models for justification logic

    Get PDF
    We introduce a new semantics for justification logic based on subset relations. Instead of using the established and more symbolic interpretation of justifications, we model justifications as sets of possible worlds. We introduce a new justification logic that is sound and complete with respect to our semantics. Moreover, we present another variant of our semantics that corresponds to traditional justification logic. These types of models offer us a versatile tool to work with justifications, e.g.~by extending them with a probability measure to capture uncertain justifications. Following this strategy we will show that they subsume Artemov's approach to aggregating probabilistic evidence

    Complexity Jumps In Multiagent Justification Logic Under Interacting Justifications

    Full text link
    The Logic of Proofs, LP, and its successor, Justification Logic, is a refinement of the modal logic approach to epistemology in which proofs/justifications are taken into account. In 2000 Kuznets showed that satisfiability for LP is in the second level of the polynomial hierarchy, a result which has been successfully repeated for all other one-agent justification logics whose complexity is known. We introduce a family of multi-agent justification logics with interactions between the agents' justifications, by extending and generalizing the two-agent versions of the Logic of Proofs introduced by Yavorskaya in 2008. Known concepts and tools from the single-agent justification setting are adjusted for this multiple agent case. We present tableau rules and some preliminary complexity results. In several cases the satisfiability problem for these logics remains in the second level of the polynomial hierarchy, while for others it is PSPACE or EXP-hard. Furthermore, this problem becomes PSPACE-hard even for certain two-agent logics, while there are EXP-hard logics of three agents
    • …
    corecore