101,852 research outputs found

    The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area

    Get PDF
    The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Numerical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer patented in USA and EU. It is revealed in the paper that at infinity the snowflake is not unique, i.e., different snowflakes can be distinguished for different infinite numbers of steps executed during the process of their generation. It is then shown that for any given infinite number n of steps it becomes possible to calculate the exact infinite number, Nn, of sides of the snowflake, the exact infinitesimal length, Ln, of each side and the exact infinite perimeter, Pn, of the Koch snowflake as the result of multiplication of the infinite Nn by the infinitesimal Ln. It is established that for different infinite n and k the infinite perimeters Pn and Pk are also different and the difference can be infinite. It is shown that the finite areas An and Ak of the snowflakes can be also calculated exactly (up to infinitesimals) for different infinite n and k and the difference An − Ak results to be infinitesimal. Finally, snowflakes constructed starting from different initial conditions are also studied and their quantitative characteristics at infinity are computed

    Towards a Church-Turing-Thesis for Infinitary Computations

    Full text link
    We consider the question whether there is an infinitary analogue of the Church-Turing-thesis. To this end, we argue that there is an intuitive notion of transfinite computability and build a canonical model, called Idealized Agent Machines (IAMIAMs) of this which will turn out to be equivalent in strength to the Ordinal Turing Machines defined by P. Koepke

    Membrane Dynamics in M(atrix) Theory

    Get PDF
    We analyze some of the kinematical and dynamical properties of flat infinite membrane solutions in the conjectured M theory proposed by Banks, Fischler, Shenker and Susskind. In particular, we compute the long range potential between membranes and anti-membranes, and between membranes and gravitons, and compare it with the supergravity results. We also discuss membranes with finite relative longitudinal velocities, providing some evidence for the eleven dimensional Lorentz invariance of the theory.Comment: 20 pages, harvma

    Infinite time Turing machines and an application to the hierarchy of equivalence relations on the reals

    Full text link
    We describe the basic theory of infinite time Turing machines and some recent developments, including the infinite time degree theory, infinite time complexity theory, and infinite time computable model theory. We focus particularly on the application of infinite time Turing machines to the analysis of the hierarchy of equivalence relations on the reals, in analogy with the theory arising from Borel reducibility. We define a notion of infinite time reducibility, which lifts much of the Borel theory into the class Δ21\bm{\Delta}^1_2 in a satisfying way.Comment: Submitted to the Effective Mathematics of the Uncountable Conference, 200
    • …
    corecore