1,840 research outputs found

    The Likelihood Encoder for Lossy Compression

    Full text link
    A likelihood encoder is studied in the context of lossy source compression. The analysis of the likelihood encoder is based on the soft-covering lemma. It is demonstrated that the use of a likelihood encoder together with the soft-covering lemma yields simple achievability proofs for classical source coding problems. The cases of the point-to-point rate-distortion function, the rate-distortion function with side information at the decoder (i.e. the Wyner-Ziv problem), and the multi-terminal source coding inner bound (i.e. the Berger-Tung problem) are examined in this paper. Furthermore, a non-asymptotic analysis is used for the point-to-point case to examine the upper bound on the excess distortion provided by this method. The likelihood encoder is also related to a recent alternative technique using properties of random binning

    The Likelihood Encoder for Lossy Source Compression

    Full text link
    In this work, a likelihood encoder is studied in the context of lossy source compression. The analysis of the likelihood encoder is based on a soft-covering lemma. It is demonstrated that the use of a likelihood encoder together with the soft-covering lemma gives alternative achievability proofs for classical source coding problems. The case of the rate-distortion function with side information at the decoder (i.e. the Wyner-Ziv problem) is carefully examined and an application of the likelihood encoder to the multi-terminal source coding inner bound (i.e. the Berger-Tung region) is outlined.Comment: 5 pages, 2 figures, ISIT 201

    Lossy Compression with Near-uniform Encoder Outputs

    Full text link
    It is well known that lossless compression of a discrete memoryless source with near-uniform encoder output is possible at a rate above its entropy if and only if the encoder is randomized. This work focuses on deriving conditions for near-uniform encoder output(s) in the Wyner-Ziv and the distributed lossy compression problems. We show that in the Wyner-Ziv problem, near-uniform encoder output and operation close to the WZ-rate limit is simultaneously possible, whereas in the distributed lossy compression problem, jointly near-uniform outputs is achievable in the interior of the distributed lossy compression rate region if the sources share non-trivial G\'{a}cs-K\"{o}rner common information.Comment: Submitted to the 2016 IEEE International Symposium on Information Theory (11 Pages, 3 Figures

    A Rate-Distortion Based Secrecy System with Side Information at the Decoders

    Full text link
    A secrecy system with side information at the decoders is studied in the context of lossy source compression over a noiseless broadcast channel. The decoders have access to different side information sequences that are correlated with the source. The fidelity of the communication to the legitimate receiver is measured by a distortion metric, as is traditionally done in the Wyner-Ziv problem. The secrecy performance of the system is also evaluated under a distortion metric. An achievable rate-distortion region is derived for the general case of arbitrarily correlated side information. Exact bounds are obtained for several special cases in which the side information satisfies certain constraints. An example is considered in which the side information sequences come from a binary erasure channel and a binary symmetric channel.Comment: 8 pages. Allerton 201

    Generative Compression

    Full text link
    Traditional image and video compression algorithms rely on hand-crafted encoder/decoder pairs (codecs) that lack adaptability and are agnostic to the data being compressed. Here we describe the concept of generative compression, the compression of data using generative models, and suggest that it is a direction worth pursuing to produce more accurate and visually pleasing reconstructions at much deeper compression levels for both image and video data. We also demonstrate that generative compression is orders-of-magnitude more resilient to bit error rates (e.g. from noisy wireless channels) than traditional variable-length coding schemes
    corecore