1,403 research outputs found

    A modular software architecture for UAVs

    Get PDF
    There have been several attempts to create scalable and hardware independent software architectures for Unmanned Aerial Vehicles (UAV). In this work, we propose an onboard architecture for UAVs where hardware abstraction, data storage and communication between modules are efficiently maintained. All processing and software development is done on the UAV while state and mission status of the UAV is monitored from a ground station. The architecture also allows rapid development of mission-specific third party applications on the vehicle with the help of the core module

    Implementation of UAV Coordination Based on a Hierarchical Multi-UAV Simulation Platform

    Full text link
    In this paper, a hierarchical multi-UAV simulation platform,called XTDrone, is designed for UAV swarms, which is completely open-source 4 . There are six layers in XTDrone: communication, simulator,low-level control, high-level control, coordination, and human interac-tion layers. XTDrone has three advantages. Firstly, the simulation speedcan be adjusted to match the computer performance, based on the lock-step mode. Thus, the simulations can be conducted on a work stationor on a personal laptop, for different purposes. Secondly, a simplifiedsimulator is also developed which enables quick algorithm designing sothat the approximated behavior of UAV swarms can be observed inadvance. Thirdly, XTDrone is based on ROS, Gazebo, and PX4, andhence the codes in simulations can be easily transplanted to embeddedsystems. Note that XTDrone can support various types of multi-UAVmissions, and we provide two important demos in this paper: one is aground-station-based multi-UAV cooperative search, and the other is adistributed UAV formation flight, including consensus-based formationcontrol, task assignment, and obstacle avoidance.Comment: 12 pages, 10 figures. And for the, see https://gitee.com/robin_shaun/XTDron

    LAVAPilot: Lightweight UAV Trajectory Planner with Situational Awareness for Embedded Autonomy to Track and Locate Radio-tags

    Full text link
    Tracking and locating radio-tagged wildlife is a labor-intensive and time-consuming task necessary in wildlife conservation. In this article, we focus on the problem of achieving embedded autonomy for a resource-limited aerial robot for the task capable of avoiding undesirable disturbances to wildlife. We employ a lightweight sensor system capable of simultaneous (noisy) measurements of radio signal strength information from multiple tags for estimating object locations. We formulate a new lightweight task-based trajectory planning method-LAVAPilot-with a greedy evaluation strategy and a void functional formulation to achieve situational awareness to maintain a safe distance from objects of interest. Conceptually, we embed our intuition of moving closer to reduce the uncertainty of measurements into LAVAPilot instead of employing a computationally intensive information gain based planning strategy. We employ LAVAPilot and the sensor to build a lightweight aerial robot platform with fully embedded autonomy for jointly tracking and planning to track and locate multiple VHF radio collar tags used by conservation biologists. Using extensive Monte Carlo simulation-based experiments, implementations on a single board compute module, and field experiments using an aerial robot platform with multiple VHF radio collar tags, we evaluate our joint planning and tracking algorithms. Further, we compare our method with other information-based planning methods with and without situational awareness to demonstrate the effectiveness of our robot executing LAVAPilot. Our experiments demonstrate that LAVAPilot significantly reduces (by 98.5%) the computational cost of planning to enable real-time planning decisions whilst achieving similar localization accuracy of objects compared to information gain based planning methods, albeit taking a slightly longer time to complete a mission.Comment: Accepted to 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Carnegie Mellon Team Tartan: Mission-level Robustness with Rapidly Deployed Autonomous Aerial Vehicles in the MBZIRC 2020

    Full text link
    For robotics systems to be used in high risk, real-world situations, they have to be quickly deployable and robust to environmental changes, under-performing hardware, and mission subtask failures. Robots are often designed to consider a single sequence of mission events, with complex algorithms lowering individual subtask failure rates under some critical constraints. Our approach is to leverage common techniques in vision and control and encode robustness into mission structure through outcome monitoring and recovery strategies, aided by a system infrastructure that allows for quick mission deployments under tight time constraints and no central communication. We also detail lessons in rapid field robotics development and testing. Systems were developed and evaluated through real-robot experiments at an outdoor test site in Pittsburgh, Pennsylvania, USA, as well as in the 2020 Mohamed Bin Zayed International Robotics Challenge. All competition trials were completed in fully autonomous mode without RTK-GPS. Our system led to 4th place in Challenge 2 and 7th place in the Grand Challenge, and achievements like popping five balloons (Challenge 1), successfully picking and placing a block (Challenge 2), and dispensing the most water autonomously with a UAV of all teams onto an outdoor, real fire (Challenge 3).Comment: 28 pages, 26 figures. To appear in Field Robotics, Special Issues on MBZIRC 202

    Research Brief

    Get PDF
    Approved for public release; distribution is unlimited

    MRS Drone: A Modular Platform for Real-World Deployment of Aerial Multi-Robot Systems

    Full text link
    This paper presents a modular autonomous Unmanned Aerial Vehicle (UAV) platform called the Multi-robot Systems (MRS) Drone that can be used in a large range of indoor and outdoor applications. The MRS Drone features unique modularity with respect to changes in actuators, frames, and sensory configuration. As the name suggests, the platform is specially tailored for deployment within a MRS group. The MRS Drone contributes to the state-of-the-art of UAV platforms by allowing smooth real-world deployment of multiple aerial robots, as well as by outperforming other platforms with its modularity. For real-world multi-robot deployment in various applications, the platform is easy to both assemble and modify. Moreover, it is accompanied by a realistic simulator to enable safe pre-flight testing and a smooth transition to complex real-world experiments. In this manuscript, we present mechanical and electrical designs, software architecture, and technical specifications to build a fully autonomous multi UAV system. Finally, we demonstrate the full capabilities and the unique modularity of the MRS Drone in various real-world applications that required a diverse range of platform configurations.Comment: 49 pages, 39 figures, accepted for publication to the Journal of Intelligent & Robotic System
    corecore