8,066 research outputs found

    Percolation in Multi-hop Wireless Networks

    Get PDF
    To be adde

    Helly-Type Theorems in Property Testing

    Full text link
    Helly's theorem is a fundamental result in discrete geometry, describing the ways in which convex sets intersect with each other. If SS is a set of nn points in RdR^d, we say that SS is (k,G)(k,G)-clusterable if it can be partitioned into kk clusters (subsets) such that each cluster can be contained in a translated copy of a geometric object GG. In this paper, as an application of Helly's theorem, by taking a constant size sample from SS, we present a testing algorithm for (k,G)(k,G)-clustering, i.e., to distinguish between two cases: when SS is (k,G)(k,G)-clusterable, and when it is ϵ\epsilon-far from being (k,G)(k,G)-clusterable. A set SS is ϵ\epsilon-far (0<ϵ1)(0<\epsilon\leq1) from being (k,G)(k,G)-clusterable if at least ϵn\epsilon n points need to be removed from SS to make it (k,G)(k,G)-clusterable. We solve this problem for k=1k=1 and when GG is a symmetric convex object. For k>1k>1, we solve a weaker version of this problem. Finally, as an application of our testing result, in clustering with outliers, we show that one can find the approximate clusters by querying a constant size sample, with high probability

    Jamming Percolation and Glass Transitions in Lattice Models

    Full text link
    A new class of lattice gas models with trivial interactions but constrained dynamics are introduced. These are proven to exhibit a dynamical glass transition: above a critical density, rho_c, ergodicity is broken due to the appearance of an infinite spanning cluster of jammed particles. The fraction of jammed particles is discontinuous at the transition, while in the unjammed phase dynamical correlation lengths and timescales diverge as exp[C(rho_c-rho)^(-mu)]. Dynamic correlations display two-step relaxation similar to glass-formers and jamming systems.Comment: 4 pages, 2 figs. Final version accepted for publication in Phys. Rev. Let

    A Transfer Matrix for the Backbone Exponent of Two-Dimensional Percolation

    Full text link
    Rephrasing the backbone of two-dimensional percolation as a monochromatic path crossing problem, we investigate the latter by a transfer matrix approach. Conformal invariance links the backbone dimension D_b to the highest eigenvalue of the transfer matrix T, and we obtain the result D_b=1.6431 \pm 0.0006. For a strip of width L, T is roughly of size 2^{3^L}, but we manage to reduce it to \sim L!. We find that the value of D_b is stable with respect to inclusion of additional ``blobs'' tangent to the backbone in a finite number of points.Comment: 19 page
    corecore