2,611 research outputs found

    On local weak limit and subgraph counts for sparse random graphs

    Full text link
    We use an inequality of Sidorenko to show a general relation between local and global subgraph counts and degree moments for locally weakly convergent sequences of sparse random graphs. This yields an optimal criterion to check when the asymptotic behaviour of graph statistics such as the clustering coefficient and assortativity is determined by the local weak limit. As an application we obtain new facts for several common models of sparse random intersection graphs where the local weak limit, as we see here, is a simple random clique tree corresponding to a certain two-type Galton-Watson branching process

    Moment-based parameter estimation in binomial random intersection graph models

    Full text link
    Binomial random intersection graphs can be used as parsimonious statistical models of large and sparse networks, with one parameter for the average degree and another for transitivity, the tendency of neighbours of a node to be connected. This paper discusses the estimation of these parameters from a single observed instance of the graph, using moment estimators based on observed degrees and frequencies of 2-stars and triangles. The observed data set is assumed to be a subgraph induced by a set of n0n_0 nodes sampled from the full set of nn nodes. We prove the consistency of the proposed estimators by showing that the relative estimation error is small with high probability for n0≫n2/3≫1n_0 \gg n^{2/3} \gg 1. As a byproduct, our analysis confirms that the empirical transitivity coefficient of the graph is with high probability close to the theoretical clustering coefficient of the model.Comment: 15 pages, 6 figure

    A statistical network analysis of the HIV/AIDS epidemics in Cuba

    Get PDF
    The Cuban contact-tracing detection system set up in 1986 allowed the reconstruction and analysis of the sexual network underlying the epidemic (5,389 vertices and 4,073 edges, giant component of 2,386 nodes and 3,168 edges), shedding light onto the spread of HIV and the role of contact-tracing. Clustering based on modularity optimization provides a better visualization and understanding of the network, in combination with the study of covariates. The graph has a globally low but heterogeneous density, with clusters of high intraconnectivity but low interconnectivity. Though descriptive, our results pave the way for incorporating structure when studying stochastic SIR epidemics spreading on social networks
    • …
    corecore