3 research outputs found

    Density estimation from an individual numerical sequence

    Full text link
    This paper considers estimation of a univariate density from an individual numerical sequence. It is assumed that (i) the limiting relative frequencies of the numerical sequence are governed by an unknown density, and (ii) there is a known upper bound for the variation of the density on an increasing sequence of intervals. A simple estimation scheme is proposed, and is shown to be L1L_1 consistent when (i) and (ii) apply. In addition it is shown that there is no consistent estimation scheme for the set of individual sequences satisfying only condition (i)

    Consistent Estimation of Identifiable Nonparametric Mixture Models from Grouped Observations

    Full text link
    Recent research has established sufficient conditions for finite mixture models to be identifiable from grouped observations. These conditions allow the mixture components to be nonparametric and have substantial (or even total) overlap. This work proposes an algorithm that consistently estimates any identifiable mixture model from grouped observations. Our analysis leverages an oracle inequality for weighted kernel density estimators of the distribution on groups, together with a general result showing that consistent estimation of the distribution on groups implies consistent estimation of mixture components. A practical implementation is provided for paired observations, and the approach is shown to outperform existing methods, especially when mixture components overlap significantly

    Universal Denoising of Discrete-time Continuous-Amplitude Signals

    Full text link
    We consider the problem of reconstructing a discrete-time signal (sequence) with continuous-valued components corrupted by a known memoryless channel. When performance is measured using a per-symbol loss function satisfying mild regularity conditions, we develop a sequence of denoisers that, although independent of the distribution of the underlying `clean' sequence, is universally optimal in the limit of large sequence length. This sequence of denoisers is universal in the sense of performing as well as any sliding window denoising scheme which may be optimized for the underlying clean signal. Our results are initially developed in a ``semi-stochastic'' setting, where the noiseless signal is an unknown individual sequence, and the only source of randomness is due to the channel noise. It is subsequently shown that in the fully stochastic setting, where the noiseless sequence is a stationary stochastic process, our schemes universally attain optimum performance. The proposed schemes draw from nonparametric density estimation techniques and are practically implementable. We demonstrate efficacy of the proposed schemes in denoising gray-scale images in the conventional additive white Gaussian noise setting, with additional promising results for less conventional noise distributions.Comment: 56 page
    corecore