14,649 research outputs found

    2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation

    Full text link
    We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (2182^{18}) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (409634096^3) particle cosmological simulations, accounting for 4×10204 \times 10^{20} floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracy and scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.Comment: 12 pages, 8 figures, 77 references; To appear in Proceedings of SC '1

    Fluid Communities: A Competitive, Scalable and Diverse Community Detection Algorithm

    Full text link
    We introduce a community detection algorithm (Fluid Communities) based on the idea of fluids interacting in an environment, expanding and contracting as a result of that interaction. Fluid Communities is based on the propagation methodology, which represents the state-of-the-art in terms of computational cost and scalability. While being highly efficient, Fluid Communities is able to find communities in synthetic graphs with an accuracy close to the current best alternatives. Additionally, Fluid Communities is the first propagation-based algorithm capable of identifying a variable number of communities in network. To illustrate the relevance of the algorithm, we evaluate the diversity of the communities found by Fluid Communities, and find them to be significantly different from the ones found by alternative methods.Comment: Accepted at the 6th International Conference on Complex Networks and Their Application

    Optimising UCNS3D, a High-Order finite-Volume WENO Scheme Code for arbitrary unstructured Meshes

    Get PDF
    UCNS3D is a computational-fluid-dynamics (CFD) code for the simulation of viscous flows on arbitrary unstructured meshes. It employs very high-order numerical schemes which inherently are easier to scale than lower-order numerical schemes due to the higher ratio of computation versus communication. In this white paper, we report on optimisations of the UCNS3D code implemented in the course of the PRACE Preparatory Access Type C project “HOVE” in the time frame of February to August 2016. Through the optimisation of dense linear algebra operations, in particular matrix-vector products, by formula rewriting, pre-computation and the usage of BLAS, significant speedups of the code by factors of 2 to 6 have been achieved for representative benchmark cases. Moreover, very good scalability up to the order of 10,000 CPU cores has been demonstrated

    Saharan dust deposition may affect phytoplankton growth in the mediterranean sea at ecological time scales

    Get PDF
    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layerPostprint (published version

    Analyzing and Modeling the Performance of the HemeLB Lattice-Boltzmann Simulation Environment

    Get PDF
    We investigate the performance of the HemeLB lattice-Boltzmann simulator for cerebrovascular blood flow, aimed at providing timely and clinically relevant assistance to neurosurgeons. HemeLB is optimised for sparse geometries, supports interactive use, and scales well to 32,768 cores for problems with ~81 million lattice sites. We obtain a maximum performance of 29.5 billion site updates per second, with only an 11% slowdown for highly sparse problems (5% fluid fraction). We present steering and visualisation performance measurements and provide a model which allows users to predict the performance, thereby determining how to run simulations with maximum accuracy within time constraints.Comment: Accepted by the Journal of Computational Science. 33 pages, 16 figures, 7 table
    corecore