44 research outputs found

    Random Projections For Large-Scale Regression

    Full text link
    Fitting linear regression models can be computationally very expensive in large-scale data analysis tasks if the sample size and the number of variables are very large. Random projections are extensively used as a dimension reduction tool in machine learning and statistics. We discuss the applications of random projections in linear regression problems, developed to decrease computational costs, and give an overview of the theoretical guarantees of the generalization error. It can be shown that the combination of random projections with least squares regression leads to similar recovery as ridge regression and principal component regression. We also discuss possible improvements when averaging over multiple random projections, an approach that lends itself easily to parallel implementation.Comment: 13 pages, 3 Figure

    Privacy-Utility Trade-off of Linear Regression under Random Projections and Additive Noise

    Full text link
    Data privacy is an important concern in machine learning, and is fundamentally at odds with the task of training useful learning models, which typically require the acquisition of large amounts of private user data. One possible way of fulfilling the machine learning task while preserving user privacy is to train the model on a transformed, noisy version of the data, which does not reveal the data itself directly to the training procedure. In this work, we analyze the privacy-utility trade-off of two such schemes for the problem of linear regression: additive noise, and random projections. In contrast to previous work, we consider a recently proposed notion of differential privacy that is based on conditional mutual information (MI-DP), which is stronger than the conventional (ϵ,δ)(\epsilon, \delta)-differential privacy, and use relative objective error as the utility metric. We find that projecting the data to a lower-dimensional subspace before adding noise attains a better trade-off in general. We also make a connection between privacy problem and (non-coherent) SIMO, which has been extensively studied in wireless communication, and use tools from there for the analysis. We present numerical results demonstrating the performance of the schemes.Comment: A short version is published in ISIT 201

    The Noisy Power Method: A Meta Algorithm with Applications

    Full text link
    We provide a new robust convergence analysis of the well-known power method for computing the dominant singular vectors of a matrix that we call the noisy power method. Our result characterizes the convergence behavior of the algorithm when a significant amount noise is introduced after each matrix-vector multiplication. The noisy power method can be seen as a meta-algorithm that has recently found a number of important applications in a broad range of machine learning problems including alternating minimization for matrix completion, streaming principal component analysis (PCA), and privacy-preserving spectral analysis. Our general analysis subsumes several existing ad-hoc convergence bounds and resolves a number of open problems in multiple applications including streaming PCA and privacy-preserving singular vector computation.Comment: NIPS 201
    corecore