7,215 research outputs found

    Fast Convex Decomposition for Truthful Social Welfare Approximation

    Full text link
    Approximating the optimal social welfare while preserving truthfulness is a well studied problem in algorithmic mechanism design. Assuming that the social welfare of a given mechanism design problem can be optimized by an integer program whose integrality gap is at most α\alpha, Lavi and Swamy~\cite{Lavi11} propose a general approach to designing a randomized α\alpha-approximation mechanism which is truthful in expectation. Their method is based on decomposing an optimal solution for the relaxed linear program into a convex combination of integer solutions. Unfortunately, Lavi and Swamy's decomposition technique relies heavily on the ellipsoid method, which is notorious for its poor practical performance. To overcome this problem, we present an alternative decomposition technique which yields an α(1+ϵ)\alpha(1 + \epsilon) approximation and only requires a quadratic number of calls to an integrality gap verifier

    Asymmetric Traveling Salesman Path and Directed Latency Problems

    Full text link
    We study integrality gaps and approximability of two closely related problems on directed graphs. Given a set V of n nodes in an underlying asymmetric metric and two specified nodes s and t, both problems ask to find an s-t path visiting all other nodes. In the asymmetric traveling salesman path problem (ATSPP), the objective is to minimize the total cost of this path. In the directed latency problem, the objective is to minimize the sum of distances on this path from s to each node. Both of these problems are NP-hard. The best known approximation algorithms for ATSPP had ratio O(log n) until the very recent result that improves it to O(log n/ log log n). However, only a bound of O(sqrt(n)) for the integrality gap of its linear programming relaxation has been known. For directed latency, the best previously known approximation algorithm has a guarantee of O(n^(1/2+eps)), for any constant eps > 0. We present a new algorithm for the ATSPP problem that has an approximation ratio of O(log n), but whose analysis also bounds the integrality gap of the standard LP relaxation of ATSPP by the same factor. This solves an open problem posed by Chekuri and Pal [2007]. We then pursue a deeper study of this linear program and its variations, which leads to an algorithm for the k-person ATSPP (where k s-t paths of minimum total length are sought) and an O(log n)-approximation for the directed latency problem
    • …
    corecore