7 research outputs found

    Directed Data-Processing Inequalities for Systems with Feedback

    Get PDF
    We present novel data-processing inequalities relating the mutual information and the directed information in systems with feedback. The internal blocks within such systems are restricted only to be causal mappings, but are allowed to be non-linear, stochastic and time varying. These blocks can for example represent source encoders, decoders or even communication channels. Moreover, the involved signals can be arbitrarily distributed. Our first main result relates mutual and directed informations and can be interpreted as a law of conservation of information flow. Our second main result is a pair of data-processing inequalities (one the conditional version of the other) between nested pairs of random sequences entirely within the closed loop. Our third main result is introducing and characterizing the notion of in-the-loop (ITL) transmission rate for channel coding scenarios in which the messages are internal to the loop. Interestingly, in this case the conventional notions of transmission rate associated with the entropy of the messages and of channel capacity based on maximizing the mutual information between the messages and the output turn out to be inadequate. Instead, as we show, the ITL transmission rate is the unique notion of rate for which a channel code attains zero error probability if and only if such ITL rate does not exceed the corresponding directed information rate from messages to decoded messages. We apply our data-processing inequalities to show that the supremum of achievable (in the usual channel coding sense) ITL transmission rates is upper bounded by the supremum of the directed information rate across the communication channel. Moreover, we present an example in which this upper bound is attained. Finally, ...Comment: Submitted to Entropy. arXiv admin note: substantial text overlap with arXiv:1301.642

    Fundamental limitations on communication channels with noisy feedback: information flow, capacity and bounds

    Get PDF
    Since the success of obtaining the capacity (i.e. the maximal achievable transmission rate under which the message can be recovered with arbitrarily small probability of error) for non-feedback point-to-point communication channels by C. Shannon (in 1948), Information Theory has been proved to be a powerful tool to derive fundamental limitations in communication systems. During the last decade, motivated by the emerging of networked systems, information theorists have turned lots of their attention to communication channels with feedback (through another channel from receiver to transmitter). Under the assumption that the feedback channel is noiseless, a large body of notable results have been derived, although much work still needs to be done. However, when this ideal assumption is removed, i.e., the feedback channel is noisy, only few valuable results can be found in the literature and many challenging problems are still open. This thesis aims to address some of these long-standing noisy feedback problems, with concentration on the channel capacity. First of all, we analyze the fundamental information flow in noisy feedback channels. We introduce a new notion, the residual directed information, in order to characterize the noisy feedback channel capacity for which the standard directed information can not be used. As an illustration, finite-alphabet noisy feedback channels have been studied in details. Next, we provide an information flow decomposition equality which serves as a foundation of other novel results in this thesis. With the result of information flow decomposition in hand, we next investigate time-varying Gaussian channels with additive Gaussian noise feedback. Following the notable Cover-Pombra results in 1989, we define the n-block noisy feedback capacity and derive a pair of n-block upper and lower bounds on the n-block noisy feedback capacity. These bounds can be obtained by efficiently solving convex optimization problems. Under the assumption of stationarity on the additive Gaussian noises, we show that the limits of these n-block bounds can be characterized in a power spectral optimization form. In addition, two computable lower bounds are derived for the Shannon capacity. Next, we consider a class of channels where feedback could not increase the capacity and thus the noisy feedback capacity equals to the non-feedback capacity. We derive a necessary condition (characterized by the directed information) for the capacity-achieving channel codes. The condition implies that using noisy feedback is detrimental to achievable rate, i.e, the capacity can not be achieved by using noisy feedback. Finally, we introduce a new framework of communication channels with noisy feedback where the feedback information received by the transmitter is also available to the decoder with some finite delays. We investigate the capacity and linear coding schemes for this extended noisy feedback channels. To summarize, this thesis firstly provides a foundation (i.e. information flow analysis) for analyzing communications channels with noisy feedback. In light of this analysis, we next present a sequence of novel results, e.g. channel coding theorem, capacity bounds, etc., which result in a significant step forward to address the long-standing noisy feedback problem
    corecore