15,622 research outputs found

    On the possibility of radar echo detection of ultra-high energy cosmic ray- and neutrino-induced extensive air showers

    Get PDF
    We revisit and extend the analysis supporting a 60 year-old suggestion that cosmic rays air showers resulting from primary particles with energies above 10^{18} eV should be straightforward to detect with radar ranging techniques, where the radar echoes are produced by scattering from the column of ionized air produced by the shower. The idea has remained curiously untested since it was proposed, but if our analysis is correct, such techniques could provide a significant alternative approach to air shower detection in a standalone array with high duty cycle, and might provide highly complementary measurements of air showers detected in existing and planned ground arrays such as the Fly's Eye or the Auger Project. The method should be particularly sensitive to showers that are transverse to and relatively distant from the detector, and is thus effective in characterizing penetrating horizontal showers such as those that might be induced by ultra-high energy neutrino primaries.Comment: 29 pages, 16 figures, uses aas2pp4.sty. Final version, to appear in Astroparticle Physics. Contains new figs, better estimate of angular precision possibl

    Almost Linear Complexity Methods for Delay-Doppler Channel Estimation

    Full text link
    A fundamental task in wireless communication is channel estimation: Compute the channel parameters a signal undergoes while traveling from a transmitter to a receiver. In the case of delay-Doppler channel, i.e., a signal undergoes only delay and Doppler shifts, a widely used method to compute delay-Doppler parameters is the pseudo-random method. It uses a pseudo-random sequence of length N; and, in case of non-trivial relative velocity between transmitter and receiver, its computational complexity is O(N^2logN) arithmetic operations. In [1] the flag method was introduced to provide a faster algorithm for delay-Doppler channel estimation. It uses specially designed flag sequences and its complexity is O(rNlogN) for channels of sparsity r. In these notes, we introduce the incidence and cross methods for channel estimation. They use triple-chirp and double-chirp sequences of length N, correspondingly. These sequences are closely related to chirp sequences widely used in radar systems. The arithmetic complexity of the incidence and cross methods is O(NlogN + r^3), and O(NlogN + r^2), respectively.Comment: 4 double column pages. arXiv admin note: substantial text overlap with arXiv:1309.372

    Mapping the spatial variation of soil moisture at the large scale using GPR for pavement applications

    Get PDF
    The characterization of shallow soil moisture spatial variability at the large scale is a crucial issue in many research studies and fields of application ranging from agriculture and geology to civil and environmental engineering. In this framework, this work contributes to the research in the area of pavement engineering for preventing damages and planning effective management. High spatial variations of subsurface water content can lead to unexpected damage of the load-bearing layers; accordingly, both safety and operability of roads become lower, thereby affecting an increase in expected accidents. A pulsed ground-penetrating radar system with ground-coupled antennas, i.e., 600-MHz and 1600-MHz center frequencies of investigation, was used to collect data in a 16 m × 16 m study site in the Po Valley area in northern Italy. Two ground-penetrating radar techniques were employed to non-destructively retrieve the subsurface moisture spatial profile. The first technique is based on the evalu¬ation of the dielectric permittivity from the attenuation of signal amplitudes. Therefore, dielectrics were converted into moisture values using soil-specific coefficients from Topp’s relationship. Ground-penetrating-radar-derived values of soil moisture were then compared with measurements from eight capacitance probes. The second technique is based on the Rayleigh scattering of the signal from the Fresnel theory, wherein the shifts of the peaks of frequency spectra are assumed comprehensive indi¬cators for characterizing the spatial variability of moisture. Both ground-penetrating radar methods have shown great promise for mapping the spatial variability of soil moisture at the large scale

    An integral equation based numerical solution for nanoparticles illuminated with collimated and focused light

    Get PDF
    To address the large number of parameters involved in nanooptical problems, a more efficient computational method is necessary. An integral equation based numerical solution is developed when the particles are illuminated with collimated and focused incident beams. The solution procedure uses the method of weighted residuals, in which the integral equation is reduced to a matrix equation and then solved for the unknown electric field distribution. In the solution procedure, the effects of the surrounding medium and boundaries are taken into account using a Green’s function formulation. Therefore, there is no additional error due to artificial boundary conditions unlike differential equation based techniques, such as finite difference time domain and finite element method. In this formulation, only the scattering nano-particle is discretized. Such an approach results in a lesser number of unknowns in the resulting matrix equation. The results are compared to the analytical Mie series solution for spherical particles, as well as to the finite element method for rectangular metallic particles. The Richards-Wolf vector field equations are combined with the integral equation based formulation to model the interaction of nanoparticles with linearly and radially polarized incident focused beams

    Reduction of the radar cross section of arbitrarily shaped cavity structures

    Get PDF
    The problem of the reduction of the radar cross section (RCS) of open-ended cavities was studied. The issues investigated were reduction through lossy coating materials on the inner cavity wall and reduction through shaping of the cavity. A method was presented to calculate the RCS of any arbitrarily shaped structure in order to study the shaping problem. The limitations of this method were also addressed. The modal attenuation was studied in a multilayered coated waveguide. It was shown that by employing two layers of coating, it was possible to achieve an increase in both the magnitude of attenuation and the frequency band of effectiveness. The numerical method used in finding the roots of the characteristic equation breaks down when the coating thickness is very lossy and large in terms of wavelength. A new method of computing the RCS of an arbitrary cavity was applied to study the effects of longitudinal bending on RCS reduction. The ray and modal descriptions for the fields in a parallel plate waveguide were compared. To extend the range of validity of the Shooting and Bouncing Ray (SBR) method, the simple ray picture must be modified to account for the beam blurring

    Electromagnetic backscattering by corner reflectors

    Get PDF
    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors

    Noise Parameters of CW Radar Sensors Used in Active Defense Systems

    Get PDF
    Active defense represents an innovative way of protecting military vehicles. It is based on the employment of a set of radar sensors which detect an approaching threat missile and activate a suitable counter-measure. Since the radar sensors are supposed to detect flying missiles very fast and, at the same time, distinguish them from stationary or slow-moving objects, CW Doppler radar sensors can be employed with a benefit. The submitted article deals with a complex noise analysis of this type of sensors. The analysis considers the noise of linear and quasi-linear RF components, phase-noise of the local oscillator as well as the noise of low-frequency circuits. Since the incidence of the phase-noise depends strongly upon the time delay between the reference and the cross-talked signals, a new method of measuring noise parameters utilizing a reflecting wall has been developed and verified. The achieved results confirm potentially high influence of the phase-noise on the noise parameters of the mentioned type of radar sensors. Obtained results can be used for the analysis of noise parameters of the similar but even more complex sensors
    • …
    corecore