298 research outputs found

    Classical and fluctuation-induced electromagnetic interactions in micronscale systems: designer bonding, antibonding, and Casimir forces

    Full text link
    Whether intentionally introduced to exert control over particles and macroscopic objects, such as for trapping or cooling, or whether arising from the quantum and thermal fluctuations of charges in otherwise neutral bodies, leading to unwanted stiction between nearby mechanical parts, electromagnetic interactions play a fundamental role in many naturally occurring processes and technologies. In this review, we survey recent progress in the understanding and experimental observation of optomechanical and quantum-fluctuation forces. Although both of these effects arise from exchange of electromagnetic momentum, their dramatically different origins, involving either real or virtual photons, lead to different physical manifestations and design principles. Specifically, we describe recent predictions and measurements of attractive and repulsive optomechanical forces, based on the bonding and antibonding interactions of evanescent waves, as well as predictions of modified and even repulsive Casimir forces between nanostructured bodies. Finally, we discuss the potential impact and interplay of these forces in emerging experimental regimes of micromechanical devices.Comment: Review to appear on the topical issue "Quantum and Hybrid Mechanical Systems" in Annalen der Physi

    Impact of nuclear vibrations on van der Waals and Casimir interactions at zero and finite temperature

    Get PDF
    Van der Waals (vdW) and Casimir interactions depend crucially on material properties and geometry, especially at molecular scales, and temperature can produce noticeable relative shifts in interaction characteristics. Despite this, common treatments of these interactions ignore electromagnetic retardation, atomism, or contributions of collective mechanical vibrations (phonons) to the infrared response, which can interplay with temperature in nontrivial ways. We present a theoretical framework for computing electromagnetic interactions among molecular structures, accounting for their geometry, electronic delocalization, short-range interatomic correlations, dissipation, and phonons at atomic scales, along with long-range electromagnetic interactions among themselves or in the vicinity of continuous macroscopic bodies. We find that in carbon allotropes, particularly fullerenes, carbyne wires, and graphene sheets, phonons can couple strongly with long-range electromagnetic fields, especially at mesoscopic scales (nanometers), to create delocalized phonon polaritons that significantly modify the infrared molecular response. These polaritons especially depend on the molecular dimensionality and dissipation, and in turn affect the vdW interaction free energies of these bodies above a macroscopic gold surface, producing nonmonotonic power laws and nontrivial temperature variations at nanometer separations that are within the reach of current Casimir force experiments.Comment: 11 pages, 4 figures (3 single-column, 1 double-column), 2 appendice

    Fundamental limits to attractive and repulsive Casimir--Polder forces

    Full text link
    We derive upper and lower bounds on the Casimir--Polder force between an anisotropic dipolar body and a macroscopic body separated by vacuum via algebraic properties of Maxwell's equations. These bounds require only a coarse characterization of the system---the material composition of the macroscopic object, the polarizability of the dipole, and any convenient partition between the two objects---to encompass all structuring possibilities. We find that the attractive Casimir--Polder force between a polarizable dipole and a uniform planar semi-infinite bulk medium always comes within 10% of the lower bound, implying that nanostructuring is of limited use for increasing attraction. In contrast, the possibility of repulsion is observed even for isotropic dipoles, and is routinely found to be several orders of magnitude larger than any known design, including recently predicted geometries involving conductors with sharp edges. Our results have ramifications for the design of surfaces to trap, suspend, or adsorb ultracold gases.Comment: 6 pages, 3 figure

    Confinement-Induced Nonlocality and Casimir Force in Transdimensional Systems

    Full text link
    We study within the framework of the Lifshitz theory the long-range Casimir force for in-plane isotropic and anisotropic free-standing transdimensional material slabs. In the former case, we show that the confinement-induced nonlocality not only weakens the attraction of ultrathin slabs but also changes the distance dependence of the material-dependent correction to the Casimir force to go as  ⁣1/ ⁣l\sim\!1/\!\sqrt{l} contrary to the  ⁣1/l\sim\!1/l dependence of that of the local Lifshitz force. In the latter case, we use closely packed array of parallel aligned single-wall carbon nanotubes in a dielectric layer of finite thickness to demonstrate strong orientational anisotropy and crossover behavior for the inter-slab attractive force in addition to its reduction with decreasing slab thickness. We give physical insight as to why such a pair of ultrathin slabs prefers to stick together in the perpendicularly oriented manner, rather than in the parallel relative orientation as one would customarily expect.Comment: 20 pages, 4 figures, 52 reference

    Effect of excess charge carriers and fluid medium on the magnitude and the sign of the Casimir-Lifshitz torqueP. Thiyam

    Full text link
    Last year, we reported a perturbative theory of the Casimir-Lifshitz torque between planar biaxially anisotropic materials in the retarded limit [Phys. Rev. Lett. {\bf 120}, 131601 (2018)], which is applied here to study the change of sign and magnitude of the torque with separation distance in biaxial black phosphorus having excess charge carriers. The study is carried out both in vacuum as well as in a background fluid medium. The presence of extra charge carriers and that of an intervening fluid medium are both found to promote enhancement of the magnitude of the torque between identical slabs. The degree of enhancement of the magnitude of torque increases not only with an increased carrier concentration but also with separation distance. In the non-identical case when different planes of anisotropic black phosphorus face each other, owing to the non-monotonic characteristic of the sign-reversal effect of the torque, the enhancement by carrier addition and intervening medium also becomes non-monotonic with distance. In the presence of a background medium, the non-monotonic degree of enhancement of the torque with distance is observed even between identical slabs
    corecore