5,315 research outputs found

    A Utility-based QoS Model for Emerging Multimedia Applications

    Get PDF
    Existing network QoS models do not sufficiently reflect the challenges faced by high-throughput, always-on, inelastic multimedia applications. In this paper, a utility-based QoS model is proposed as a user layer extension to existing communication QoS models to better assess the requirements of multimedia applications and manage the QoS provisioning of multimedia flows. Network impairment utility functions are derived from user experiments and combined to application utility functions to evaluate the application quality. Simulation is used to demonstrate the validity of the proposed QoS model

    Design and prototype of a train-to-wayside communication architecture

    Get PDF
    Telecommunication has become very important in modern society and seems to be almost omnipresent, making daily life easier, more pleasant and connecting people everywhere. It does not only connect people, but also machines, enhancing the efficiency of automated tasks and monitoring automated processes. In this context the IBBT (Interdisciplinary Institute for BroadBand Technology) project TRACK (TRain Applications over an advanced Communication networK), sets the definition and prototyping of an end-to-end train-to-wayside communication architecture as one of the main research goals. The architecture provides networking capabilities for train monitoring, personnel applications and passenger Internet services. In the context of the project a prototype framework was developed to give a complete functioning demonstrator. Every aspect: tunneling and mobility, performance enhancements, and priority and quality of service were taken into consideration. In contrast to other research in this area, which has given mostly high-level overviews, TRACK resulted in a detailed architecture with all different elements present

    Quality-Of-Control-Aware Scheduling of Communication in TSN-Based Fog Computing Platforms Using Constraint Programming

    Get PDF
    In this paper we are interested in real-time control applications that are implemented using Fog Computing Platforms consisting of interconnected heterogeneous Fog Nodes (FNs). Similar to previous research and ongoing standardization efforts, we assume that the communication between FNs is achieved via IEEE 802.1 Time Sensitive Networking (TSN). We model the control applications as a set of real-time streams, and we assume that the messages are transmitted using time-sensitive traffic that is scheduled using the Gate Control Lists (GCLs) in TSN. Given a network topology and a set of control applications, we are interested to synthesize the GCLs for messages such that the quality-of-control of applications is maximized and the deadlines of real-time messages are satisfied. We have proposed a Constraint Programming-based solution to this problem, and evaluated it on several test cases

    On application of least-delay variation problem in ethernet networks using SDN concept

    Get PDF
    The goal of this paper is to present an application idea of SDN in Smart Grids, particularly, in the area of L2 multicast as defined by IEC 61850-9-2. Authors propose an Integer Linear Formulation (ILP) dealing with a Least-Delay-Variation multicast forwarding problem that has a potential to utilize Ethernet networks in a new way. The proposed ILP formulation is numerically evaluated on random graph topologies and results are compared to a shortest path tree approach that is traditionally a product of Spanning Tree Protocols. Results confirm the correctness of the ILP formulation and illustrate dependency of a solution quality on the selected graph models, especially, in a case of scale-free topologies

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure
    corecore