1,441 research outputs found

    Evaluation of Using Semi-Autonomy Features in Mobile Robotic Telepresence Systems

    Get PDF
    Mobile robotic telepresence systems used for social interaction scenarios require that users steer robots in a remote environment. As a consequence, a heavy workload can be put on users if they are unfamiliar with using robotic telepresence units. One way to lessen this workload is to automate certain operations performed during a telepresence session in order to assist remote drivers in navigating the robot in new environments. Such operations include autonomous robot localization and navigation to certain points in the home and automatic docking of the robot to the charging station. In this paper we describe the implementation of such autonomous features along with user evaluation study. The evaluation scenario is focused on the first experience on using the system by novice users. Importantly, that the scenario taken in this study assumed that participants have as little as possible prior information about the system. Four different use-cases were identified from the user behaviour analysis.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Plan Nacional de Investigación, proyecto DPI2011-25483

    Telepresence system development for application to the control of remote robotic systems

    Get PDF
    The recent developments of techniques which assist an operator in the control of remote robotic systems are described. In particular, applications are aimed at two specific scenarios: The control of remote robot manipulators; and motion planning for remote transporter vehicles. Common to both applications is the use of realistic computer graphics images which provide the operator with pertinent information. The specific system developments for several recently completed and ongoing telepresence research projects are described

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    Human-Machine Interfaces for Service Robotics

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Into the Wild: Pushing a Telepresence Robot Outside the Lab

    Get PDF
    Most robotic systems are usually used and evaluated in laboratory setting for a limited period of time. The limitation of lab evaluation is that it does not take into account the different challenges imposed by the fielding of robotic solutions into real contexts. Our current work evaluates a robotic telepresence platform to be used with elderly people. This paper describes our progressive effort toward a comprehensive, ecological and longitudinal evaluation of such robots outside the lab. It first discusses some results from a twofold short term evaluation performed in Italy. Specifically we report results from both a usability assessment in laboratory and a subsequent study obtained by interviewing 44 healthcare workers as possible secondary users (people connecting to the robot) and 10 older adults as possible primary users (people receiving visits through the robot). It then describes a complete evaluation plan designed for a long term assessment to be applied "outside the lab" dwelling on the initial application of such methodology to test sites in Italy

    Immersive Teleoperation of the Eye Gaze of Social Robots Assessing Gaze-Contingent Control of Vergence, Yaw and Pitch of Robotic Eyes

    Get PDF
    International audienceThis paper presents a new teleoperation system – called stereo gaze-contingent steering (SGCS) – able to seamlessly control the vergence, yaw and pitch of the eyes of a humanoid robot – here an iCub robot – from the actual gaze direction of a remote pilot. The video stream captured by the cameras embedded in the mobile eyes of the iCub are fed into an HTC Vive R Head-Mounted Display equipped with an SMI R binocular eye-tracker. The SGCS achieves the effective coupling between the eye-tracked gaze of the pilot and the robot's eye movements. SGCS both ensures a faithful reproduction of the pilot's eye movements – that is perquisite for the readability of the robot's gaze patterns by its interlocutor – and maintains the pilot's oculomotor visual clues – that avoids fatigue and sickness due to sensorimotor conflicts. We here assess the precision of this servo-control by asking several pilots to gaze towards known objects positioned in the remote environment. We demonstrate that we succeed in controlling vergence with similar precision as eyes' azimuth and elevation. This system opens the way for robot-mediated human interactions in the personal space, notably when objects in the shared working space are involved
    • …
    corecore