206 research outputs found

    Sharing delay information in service systems: a literature survey

    Get PDF
    Service providers routinely share information about upcoming waiting times with their customers, through delay announcements. The need to effectively manage the provision of these announcements has led to a substantial growth in the body of literature which is devoted to that topic. In this survey paper, we systematically review the relevant literature, summarize some of its key ideas and findings, describe the main challenges that the different approaches to the problem entail, and formulate research directions that would be interesting to consider in future work

    Does the Past Predict the Future? The Case of Delay Announcements in Service Systems

    Get PDF
    Motivated by the recent interest in making delay announcements in large service systems, such as call centers, we investigate the accuracy of announcing the waiting time of the Last customer to Enter Service (LES). In practice, customers typically respond to delay announcements by either balking or by becoming more or less impatient, and their response alters system performance. We study the accuracy of the LES announcement in single-class multi-server Markovian queueing models with announcement-dependent customer behavior. We show that, interestingly, even in this stylized setting, the LES announcement may not always be accurate. This motivates the need to study its accuracy carefully, and to determine conditions under which it is accurate. Since the direct analysis of the system with customer response is prohibitively difficult, we focus on many-server heavy-traffic analysis instead. We consider the quality-and-efficiency-driven (QED) and the efficiency-driven (ED) many-server heavy-traffic regimes and prove, under both regimes, that the LES prediction is asymptotically accurate if, and only if, asymptotic fluctuations in the queue length process are small as long as some regulatory conditions apply. This result provides an easy check for the accuracy of LES in practice. We supplement our theoretical results with an extensive simulation study to generate practical managerial insights

    A General Framework to Compare Announcement Accuracy: Static vs LES-based Announcement

    Get PDF
    Service providers often share delay information, in the form of delay announcements, with their customers. In practice, simple delay announcements, such as average waiting times or a weighted average of previously delayed customers, are often used. Our goal in this paper is to gain insight into when such announcements perform well. Specifically, we compare the accuracies of two announcements: (i) a static announcement that does not exploit real-time information about the state of the system and (ii) a dynamic announcement, specifically the last-to-enter-service (LES) announcement, which equals the delay of the last customer to have entered service at the time of the announcement. We propose a novel correlation-based approach that is theoretically appealing because it allows for a comparison of the accuracies of announcements across different queueing models, including multiclass models with a priority service discipline. It is also practically useful because estimating correlations is much easier than fitting an entire queueing model. Using a combination of queueing-theoretic analysis, real-life data analysis, and simulation, we analyze the performance of static and dynamic announcements and derive an appropriate weighted average of the two which we demonstrate has a superior performance using both simulation and data from a call center.

    Large deviations analysis for the M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt regime

    Full text link
    We consider the FCFS M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt heavy traffic regime. It is known that the normalized sequence of steady-state queue length distributions is tight and converges weakly to a limiting random variable W. However, those works only describe W implicitly as the invariant measure of a complicated diffusion. Although it was proven by Gamarnik and Stolyar that the tail of W is sub-Gaussian, the actual value of limxx2log(P(W>x))\lim_{x \rightarrow \infty}x^{-2}\log(P(W >x)) was left open. In subsequent work, Dai and He conjectured an explicit form for this exponent, which was insensitive to the higher moments of the service distribution. We explicitly compute the true large deviations exponent for W when the abandonment rate is less than the minimum service rate, the first such result for non-Markovian queues with abandonments. Interestingly, our results resolve the conjecture of Dai and He in the negative. Our main approach is to extend the stochastic comparison framework of Gamarnik and Goldberg to the setting of abandonments, requiring several novel and non-trivial contributions. Our approach sheds light on several novel ways to think about multi-server queues with abandonments in the Halfin-Whitt regime, which should hold in considerable generality and provide new tools for analyzing these systems

    Holistic assessment of call centre performance

    Get PDF
    In modern call centres 60–70% of the operational costs come in the form of the human agents who take the calls. Ensuring that the call centre operates at lowest cost and maximum efficiency involves a trade‐off of the cost of agents against lost revenue and increased customer dissatisfaction due to lost calls. Modelling the performance characteristics of a call centre in terms of the agent queue alone misses key performance influencers, specifically the interaction between channel availability at the media gateway and the time a call is queued. A blocking probability at the media gateway, as low as 0.45%, has a significant impact on the degree of queuing observed and therefore the cost and performance of the call centre. Our analysis also shows how abandonment impacts queuing delay. However, the call centre manager has less control over this than the level of contention at the media gateway. Our commercial assessment provides an evaluation of the balance between abandonment and contention, and shows that the difference in cost between the best and worst strategy is £130K per annum, however this must be balanced against a possible additional £2.98 m exposure in lost calls if abandonment alone is used

    DIFFUSION APPROXIMATION FOR EFFICIENCY-DRIVEN QUEUES UNDER REFINED PATIENCE TIME SCALING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Real-time delay announcement under competition

    Get PDF
    Internet-based technology enables firms to disseminate real-time delay information to delay-sensitive customers. We study how such delay announcements impact service providers in a competitive environment with two service providers who compete for market share. We model the service providers' strategies based on an endogenous timing game, investigating strategies that emerge in equilibrium. We determine the service providers' market shares under the various game outcomes by analyzing continuous-time Markov chains, which capture customers' joining decisions, and by developing a novel computational technique to analyze the intractable asymmetric Join-the-Shortest Queue system, providing bounds on the market shares. We find that only the lower capacity service provider announces its real-time delay under intermediate system loads and highly imbalanced capacities. However, for most parameter settings, the mere presence of a competitor induces both providers to announce delays in equilibrium, leaving customers better off on average. We relate our findings to the single-provider delay announcement literature by discussing the impact of competition on service providers, delay announcement technology firms, and customers
    corecore