39 research outputs found

    Millimeter-wave communication for a last-mile autonomous transport vehicle

    Get PDF
    Low-speed autonomous transport of passengers and goods is expected to have a strong, positive impact on the reliability and ease of travelling. Various advanced functions of the involved vehicles rely on the wireless exchange of information with other vehicles and the roadside infrastructure, thereby benefitting from the low latency and high throughput characteristics that 5G technology has to offer. This work presents an investigation of 5G millimeter-wave communication links for a low-speed autonomous vehicle, focusing on the effects of the antenna positions on both the received signal quality and the link performance. It is observed that the excess loss for communication with roadside infrastructure in front of the vehicle is nearly half-power beam width independent, and the increase of the root mean square delay spread plays a minor role in the resulting signal quality, as the absolute times are considerably shorter than the typical duration of 5G New Radio symbols. Near certain threshold levels, a reduction of the received power affects the link performance through an increased error vector magnitude of the received signal, and subsequent decrease of the achieved data throughput

    Beam-Steering Performance of Flat Luneburg Lens at 60 GHz for Future Wireless Communications

    Get PDF
    The beam-steering capabilities of a simplified flat Luneburg lens are reported at 60 GHz. The design of the lens is first described, using transformation electromagnetics, before discussion of the fabrication of the lens using casting of ceramic composites. The simulated beam-steering performance is shown, demonstrating that the lens, with only six layers and a highest permittivity of 12, achieves scan angles of ±30° with gains of at least 18 dBi over a bandwidth from 57 to 66 GHz. To verify the simulations and further demonstrate the broadband nature of the lens, raw high definition video was transmitted over a wireless link at scan angles up to 36°

    Beam Design for Millimeter-Wave Backhaul with Dual-Polarized Uniform Planar Arrays

    Full text link
    This paper proposes a beamforming design for millimeter-wave (mmWave) backhaul systems with dual-polarization antennas in uniform planar arrays (UPAs). The proposed design method optimizes a beamformer to mimic an ideal beam pattern, which has flat gain across its coverage, under the dominance of the line-of-sight (LOS) component in mmWave systems. The dual-polarization antenna structure is considered as constraints of the optimization. Simulation results verify that the resulting beamformer has uniform beam pattern and high minimum gain in the covering region.Comment: To appear in IEEE ICC 202
    corecore