5,722 research outputs found

    LeBenchmark: A Reproducible Framework for Assessing Self-Supervised Representation Learning from Speech

    Full text link
    Self-Supervised Learning (SSL) using huge unlabeled data has been successfully explored for image and natural language processing. Recent works also investigated SSL from speech. They were notably successful to improve performance on downstream tasks such as automatic speech recognition (ASR). While these works suggest it is possible to reduce dependence on labeled data for building efficient speech systems, their evaluation was mostly made on ASR and using multiple and heterogeneous experimental settings (most of them for English). This questions the objective comparison of SSL approaches and the evaluation of their impact on building speech systems. In this paper, we propose LeBenchmark: a reproducible framework for assessing SSL from speech. It not only includes ASR (high and low resource) tasks but also spoken language understanding, speech translation and emotion recognition. We also focus on speech technologies in a language different than English: French. SSL models of different sizes are trained from carefully sourced and documented datasets. Experiments show that SSL is beneficial for most but not all tasks which confirms the need for exhaustive and reliable benchmarks to evaluate its real impact. LeBenchmark is shared with the scientific community for reproducible research in SSL from speech.Comment: Will be presented at Interspeech 202

    A Study of Gender Impact in Self-supervised Models for Speech-to-Text Systems

    Full text link
    Self-supervised models for speech processing emerged recently as popular foundation blocks in speech processing pipelines. These models are pre-trained on unlabeled audio data and then used in speech processing downstream tasks such as automatic speech recognition (ASR) or speech translation (ST). Since these models are now used in research and industrial systems alike, it becomes necessary to understand the impact caused by some features such as gender distribution within pre-training data. Using French as our investigation language, we train and compare gender-specific wav2vec 2.0 models against models containing different degrees of gender balance in their pre-training data. The comparison is performed by applying these models to two speech-to-text downstream tasks: ASR and ST. Our results show that the type of downstream integration matters. We observe lower overall performance using gender-specific pre-training before fine-tuning an end-to-end ASR system. However, when self-supervised models are used as feature extractors, the overall ASR and ST results follow more complex patterns, in which the balanced pre-trained model is not necessarily the best option. Lastly, our crude 'fairness' metric, the relative performance difference measured between female and male test sets, does not display a strong variation from balanced to gender-specific pre-trained wav2vec 2.0 models.Comment: submitted to INTERSPEECH 202

    Modality Adaption or Regularization? A Case Study on End-to-End Speech Translation

    Full text link
    Pre-training and fine-tuning is a paradigm for alleviating the data scarcity problem in end-to-end speech translation (E2E ST). The commonplace "modality gap" between speech and text data often leads to inconsistent inputs between pre-training and fine-tuning. However, we observe that this gap occurs in the early stages of fine-tuning, but does not have a major impact on the final performance. On the other hand, we find that there has another gap, which we call the "capacity gap": high resource tasks (such as ASR and MT) always require a large model to fit, when the model is reused for a low resource task (E2E ST), it will get a sub-optimal performance due to the over-fitting. In a case study, we find that the regularization plays a more important role than the well-designed modality adaption method, which achieves 29.0 for en-de and 40.3 for en-fr on the MuST-C dataset. Code and models are available at https://github.com/hannlp/TAB.Comment: ACL 2023 Main Conferenc

    Automatic Quality Estimation for ASR System Combination

    Get PDF
    Recognizer Output Voting Error Reduction (ROVER) has been widely used for system combination in automatic speech recognition (ASR). In order to select the most appropriate words to insert at each position in the output transcriptions, some ROVER extensions rely on critical information such as confidence scores and other ASR decoder features. This information, which is not always available, highly depends on the decoding process and sometimes tends to over estimate the real quality of the recognized words. In this paper we propose a novel variant of ROVER that takes advantage of ASR quality estimation (QE) for ranking the transcriptions at "segment level" instead of: i) relying on confidence scores, or ii) feeding ROVER with randomly ordered hypotheses. We first introduce an effective set of features to compensate for the absence of ASR decoder information. Then, we apply QE techniques to perform accurate hypothesis ranking at segment-level before starting the fusion process. The evaluation is carried out on two different tasks, in which we respectively combine hypotheses coming from independent ASR systems and multi-microphone recordings. In both tasks, it is assumed that the ASR decoder information is not available. The proposed approach significantly outperforms standard ROVER and it is competitive with two strong oracles that e xploit prior knowledge about the real quality of the hypotheses to be combined. Compared to standard ROVER, the abs olute WER improvements in the two evaluation scenarios range from 0.5% to 7.3%
    • …
    corecore