5 research outputs found

    The Homogeneous Broadcast Problem in Narrow and Wide Strips

    Get PDF
    Let PP be a set of nodes in a wireless network, where each node is modeled as a point in the plane, and let sPs\in P be a given source node. Each node pp can transmit information to all other nodes within unit distance, provided pp is activated. The (homogeneous) broadcast problem is to activate a minimum number of nodes such that in the resulting directed communication graph, the source ss can reach any other node. We study the complexity of the regular and the hop-bounded version of the problem (in the latter, ss must be able to reach every node within a specified number of hops), with the restriction that all points lie inside a strip of width ww. We almost completely characterize the complexity of both the regular and the hop-bounded versions as a function of the strip width ww.Comment: 50 pages, WADS 2017 submissio

    The homogeneous broadcast problem in narrow and wide strips

    Get PDF
    Let PP be a set of nodes in a wireless network, where each node is modeled as a point in the plane, and let sPs\in P be a given source node. Each node pp can transmit information to all other nodes within unit distance, provided pp is activated. The (homogeneous) broadcast problem is to activate a minimum number of nodes such that in the resulting directed communication graph, the source ss can reach any other node. We study the complexity of the regular and the hop-bounded version of the problem (in the latter, ss must be able to reach every node within a specified number of hops), with the restriction that all points lie inside a strip of width ww. We almost completely characterize the complexity of both the regular and the hop-bounded versions as a function of the strip width ww

    The homogeneous broadcast problem in narrow and wide strips II:lower bounds

    Get PDF
    Let P be a set of nodes in a wireless network, where each node is modeled as a point in the plane, and let s∈ P be a given source node. Each node p can transmit information to all other nodes within unit distance, provided p is activated. The (homogeneous) broadcast problem is to activate a minimum number of nodes such that in the resulting directed communication graph, the source s can reach any other node. We study the complexity of the regular and the hop-bounded version of the problem—in the latter s must be able to reach every node within a specified number of hops—where we also consider how the complexity depends on the width w of the strip. We prove the following two lower bounds. First, we show that the regular version of the problem is W[1] -complete when parameterized by the solution size k. More precisely, we show that the problem does not admit an algorithm with running time f(k)no(k), unless ETH fails. The construction can also be used to show an f(w) n Ω ( w ) lower bound when we parameterize by the strip width w. Second, we prove that the hop-bounded version of the problem is NP-hard in strips of width 40. These results complement the algorithmic results in a companion paper (de Berg et al. in Algorithmica, submitted). </p

    The Homogeneous Broadcast Problem in Narrow and Wide Strips I: Algorithms

    No full text
    Let P be a set of nodes in a wireless network, where each node is modeled as a point in the plane, and let s∈ P be a given source node. Each node p can transmit information to all other nodes within unit distance, provided p is activated. The (homogeneous) broadcast problem is to activate a minimum number of nodes such that in the resulting directed communication graph, the source s can reach any other node. We study the complexity of the regular and the hop-bounded version of the problem (in the latter, s must be able to reach every node within a specified number of hops), with the restriction that all points lie inside a strip of width w. We describe several algorithms for both the regular and the hop-bounded versions, and show that both problems are solvable in polynomial time in strips of small constant width. These results complement the hardness results in a companion paper (de Berg et al. in Algorithmica, 2017)

    The Homogeneous Broadcast Problem in Narrow and Wide Strips II: Lower Bounds

    No full text
    Let P be a set of nodes in a wireless network, where each node is modeled as a point in the plane, and let s∈ P be a given source node. Each node p can transmit information to all other nodes within unit distance, provided p is activated. The (homogeneous) broadcast problem is to activate a minimum number of nodes such that in the resulting directed communication graph, the source s can reach any other node. We study the complexity of the regular and the hop-bounded version of the problem—in the latter s must be able to reach every node within a specified number of hops—where we also consider how the complexity depends on the width w of the strip. We prove the following two lower bounds. First, we show that the regular version of the problem is W[1] -complete when parameterized by the solution size k. More precisely, we show that the problem does not admit an algorithm with running time f(k)no(k), unless ETH fails. The construction can also be used to show an f(w) n Ω ( w ) lower bound when we parameterize by the strip width w. Second, we prove that the hop-bounded version of the problem is NP-hard in strips of width 40. These results complement the algorithmic results in a companion paper (de Berg et al. in Algorithmica, submitted)
    corecore