1,866 research outputs found

    GAMES: A new Scenario for Software and Knowledge Reuse

    Full text link
    Games are a well-known test bed for testing search algorithms and learning methods, and many authors have presented numerous reasons for the research in this area. Nevertheless, they have not received the attention they deserve as software projects. In this paper, we analyze the applicability of software and knowledge reuse in the games domain. In spite of the need to find a good evaluation function, search algorithms and interface design can be said to be the primary concerns. In addition, we will discuss the current state of the main statistical learning methods and how they can be addressed from a software engineering point of view. So, this paper proposes a reliable environment and adequate tools, necessary in order to achieve high levels of reuse in the games domain

    A new paradigm for minimax search

    Get PDF
    This paper introduces a new paradigm for minimax game-tree search algorithms. MT is a memory-enhanced version of Pearl's Test procedure. By changing the way MT is called, a number of best-first game-tree search algorithms can be simply and elegantly constructed (including SSS*). Most of the assessments of minimax search algorithms have been based on simulations. However, these simulations generally do not address two of the key ingredients of high performance game-playing programs: iterative deepening and memory usage. This paper presents experimental data from three game-playing programs (checkers, Othello and chess), covering the range from low to high branching factor. The improved move ordering due to iterative deepening and memory usage results in significantly different results from those portrayed in the literature. Whereas some simulations show alpha-beta expanding almost 100% more leaf nodes than other algorithms [Marsland, Reinefeld & Schaeffer, 1987], our results showed variations of less than 20%. One new instance of our framework MTD(f) out-performs our best alpha-beta searcher (aspiration NegaScout) on leaf nodes, total nodes and execution time. To our knowledge, these are the first reported results that compare both depth-first and best-first algorithms given the same amount of memory

    Solution trees as a basis for game tree search

    Get PDF
    A game tree algorithm is an algorithm computing the minimax value of the root of a game tree. Many algorithms use the notion of establishing proofs that this value lies above or below some boundary value. We show that this amounts to the construction of a solution tree. We discuss the role of solution trees and critical trees in the following algorithms: Principal Variation Search, alpha-beta, and SSS-2. A general procedure for the construction of a solution tree, based on alpha-beta and Null-Window-Search, is given. Furthermore two new examples of solution tree-based algorithms are presented, that surpass alpha-beta, i.e., never visit more nodes than alpha-beta, and often less

    MCTS-minimax hybrids with state evaluations

    Get PDF
    Monte-Carlo Tree Search (MCTS) has been found to show weaker play than minimax-based search in some tactical game domains. In order to combine the tactical strength of minimax and the strategic strength of MCTS, MCTS-minimax hybrids have been proposed in prior work. This arti
    corecore