6 research outputs found

    The Hard Problems Are Almost Everywhere For Random CNF-XOR Formulas

    Full text link

    Bit-Vector Model Counting using Statistical Estimation

    Full text link
    Approximate model counting for bit-vector SMT formulas (generalizing \#SAT) has many applications such as probabilistic inference and quantitative information-flow security, but it is computationally difficult. Adding random parity constraints (XOR streamlining) and then checking satisfiability is an effective approximation technique, but it requires a prior hypothesis about the model count to produce useful results. We propose an approach inspired by statistical estimation to continually refine a probabilistic estimate of the model count for a formula, so that each XOR-streamlined query yields as much information as possible. We implement this approach, with an approximate probability model, as a wrapper around an off-the-shelf SMT solver or SAT solver. Experimental results show that the implementation is faster than the most similar previous approaches which used simpler refinement strategies. The technique also lets us model count formulas over floating-point constraints, which we demonstrate with an application to a vulnerability in differential privacy mechanisms

    Phase Transition Behavior of Cardinality and XOR Constraints

    Full text link
    The runtime performance of modern SAT solvers is deeply connected to the phase transition behavior of CNF formulas. While CNF solving has witnessed significant runtime improvement over the past two decades, the same does not hold for several other classes such as the conjunction of cardinality and XOR constraints, denoted as CARD-XOR formulas. The problem of determining the satisfiability of CARD-XOR formulas is a fundamental problem with a wide variety of applications ranging from discrete integration in the field of artificial intelligence to maximum likelihood decoding in coding theory. The runtime behavior of random CARD-XOR formulas is unexplored in prior work. In this paper, we present the first rigorous empirical study to characterize the runtime behavior of 1-CARD-XOR formulas. We show empirical evidence of a surprising phase-transition that follows a non-linear tradeoff between CARD and XOR constraints

    Phase Transition Behavior of Cardinality and XOR Constraints

    Get PDF
    The runtime performance of modern SAT solvers is deeply connected to the phase transition behavior of CNF formulas. While CNF solving has witnessed significant runtime improvement over the past two decades, the same does not hold for several other classes such as the conjunction of cardinality and XOR constraints, denoted as CARD-XOR formulas. The problem of determining satisfiability of CARDXOR formulas is a fundamental problem with wide variety of applications ranging from discrete integration in the field of artificial intelligence to maximum likelihood decoding in coding theory. The runtime behavior of random CARD-XOR formulas is unexplored in prior work. In this paper, we present the first rigorous empirical study to characterize the runtime behavior of 1-CARD-XOR formulas. We show empirical evidence of a surprising phase-transition that follows a non-linear tradeoff between CARD and XOR constraints

    Quantum Search Algorithms for Constraint Satisfaction and Optimization Problems Using Grover\u27s Search and Quantum Walk Algorithms with Advanced Oracle Design

    Get PDF
    The field of quantum computing has emerged as a powerful tool for solving and optimizing combinatorial optimization problems. To solve many real-world problems with many variables and possible solutions for constraint satisfaction and optimization problems, the required number of qubits of scalable hardware for quantum computing is the bottleneck in the current generation of quantum computers. In this dissertation, we will demonstrate advanced, scalable building blocks for the quantum search algorithms that have been implemented in Grover\u27s search algorithm and the quantum walk algorithm. The scalable building blocks are used to reduce the required number of qubits in the design. The proposed architecture effectively scales and optimizes the number of qubits needed to solve large problems with a limited number of qubits. Thus, scaling and optimizing the number of qubits that can be accommodated in quantum algorithm design directly reflect on performance. Also, accuracy is a key performance metric related to how accurately one can measure quantum states. The search space of quantum search algorithms is traditionally created by using the Hadamard operator to create superposition. However, creating superpositions for problems that do not need all superposition states decreases the accuracy of the measured states. We present an efficient quantum circuit design that the user has control over to create the subspace superposition states for the search space as needed. Using only the subspace states as superposition states of the search space will increase the rate of correct solutions. In this dissertation, we will present the implementation of practical problems for Grover\u27s search algorithm and quantum walk algorithm in logic design, logic puzzles, and machine learning problems such as SAT, MAX-SAT, XOR-SAT, and like SAT problems in EDA, and mining frequent patterns for association rule mining
    corecore