7,696 research outputs found

    Secure Degrees of Freedom for Gaussian Channels with Interference: Structured Codes Outperform Gaussian Signaling

    Full text link
    In this work, we prove that a positive secure degree of freedom is achievable for a large class of Gaussian channels as long as the channel is not degraded and the channel is fully connected. This class includes the MAC wire-tap channel, the 2-user interference channel with confidential messages, the 2-user interference channel with an external eavesdropper. Best known achievable schemes to date for these channels use Gaussian signaling. In this work, we show that structured codes outperform Gaussian random codes at high SNR when channel gains are real numbers.Comment: 6 pages, Submitted to IEEE Globecom, March 200

    Towards the Secrecy Capacity of the Gaussian MIMO Wire-tap Channel: The 2-2-1 Channel

    Full text link
    We find the secrecy capacity of the 2-2-1 Gaussian MIMO wire-tap channel, which consists of a transmitter and a receiver with two antennas each, and an eavesdropper with a single antenna. We determine the secrecy capacity of this channel by proposing an achievable scheme and then developing a tight upper bound that meets the proposed achievable secrecy rate. We show that, for this channel, Gaussian signalling in the form of beam-forming is optimal, and no pre-processing of information is necessary.Comment: Submitted to IEEE Transactions on Information Theor

    Secrecy capacity region of Gaussian broadcast channel

    Full text link
    In this paper, we first consider a scenario where a source node wishes to broadcast two confidential messages for two respective receivers, while a wire-taper also receives the transmitted signal. We assume that the signals are transmitted over additive white Gaussian noise channels. We characterize the secrecy capacity region of this channel. Our achievable coding scheme is based on superposition coding and the random binning. We refer to this scheme as Secret Superposition Coding. The converse proof combines the converse proof for the conventional Gaussian broadcast channel and the perfect secrecy constraint. This capacity region matches the capacity region of the broadcast channel without security constraint. It also matches the secrecy capacity of the wire-tap channel. Based on the rate characterization of the secure Gaussian broadcast channel, we then use a multilevel coding approach for the slowly fading wire-tap. We assume that the transmitter only knows the eavesdropper’s channel. In this approach, source node sends secure layered coding and the receiver viewed as a continuum ordered users. We derive optimum power allocation for the layers which maximizes the total average rate
    • …
    corecore