3 research outputs found

    High rates of loss of heterozygosity on chromosome 19p13 in human breast cancer

    Get PDF
    We have recently discovered that the nuclear matrix protein SAFB is an oestrogen receptor corepressor. Since it has become clear that many steroid receptor cofactors play important roles in breast tumorigenesis, we investigated whether SAFB could also be involved in breast cancer. To address this question, the gene locus was examined for structural alterations in breast cancer tissue. Laser capture microdissection was used for isolating DNA from paired primary breast tumour and normal tissue specimens, and the loss of heterozygosity (LOH) at chromosome 19p13.2–3 was determined by use of microsatellite markers. LOH was detected at the marker D19S216, which colocalizes with the SAFB locus, in specimens from 29 (78.4%) of 37 informative patients. The peak LOH rate occurred at D19S216 near the SAFB locus, with LOH frequencies ranging from 21.6% to 47.2% at other markers. The finding of a very high LOH rate at the marker D19S216 strongly indicates the presence of a breast tumour-suppressor gene locus. While preliminary findings of mutations in SAFB suggest that this indeed may be a promising candidate, other potential candidate genes are located at this locus. © 2001 Cancer Research Campaign http://www.bjcancer.co

    The Bermuda Triangle : the pragmatics, policies, and principles for data sharing in the history of the Human Genome Project

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of the History of Biology 51 (2018): 693–805, doi:10.1007/s10739-018-9538-7.The Bermuda Principles for DNA sequence data sharing are an enduring legacy of the Human Genome Project (HGP). They were adopted by the HGP at a strategy meeting in Bermuda in February of 1996 and implemented in formal policies by early 1998, mandating daily release of HGP-funded DNA sequences into the public domain. The idea of daily sharing, we argue, emanated directly from strategies for large, goal-directed molecular biology projects first tested within the “community” of C. elegans researchers, and were introduced and defended for the HGP by the nematode biologists John Sulston and Robert Waterston. In the C. elegans community, and subsequently in the HGP, daily sharing served the pragmatic goals of quality control and project coordination. Yet in the HGP human genome, we also argue, the Bermuda Principles addressed concerns about gene patents impeding scientific advancement, and were aspirational and flexible in implementation and justification. They endured as an archetype for how rapid data sharing could be realized and rationalized, and permitted adaptation to the needs of various scientific communities. Yet in addition to the support of Sulston and Waterston, their adoption also depended on the clout of administrators at the US National Institutes of Health (NIH) and the UK nonprofit charity the Wellcome Trust, which together funded 90% of the HGP human sequencing effort. The other nations wishing to remain in the HGP consortium had to accommodate to the Bermuda Principles, requiring exceptions from incompatible existing or pending data access policies for publicly funded research in Germany, Japan, and France. We begin this story in 1963, with the biologist Sydney Brenner’s proposal for a nematode research program at the Laboratory of Molecular Biology (LMB) at the University of Cambridge. We continue through 2003, with the completion of the HGP human reference genome, and conclude with observations about policy and the historiography of molecular biology

    The GDB Human Genome Database Anno 1997.

    No full text
    The value of the Genome Database (GDB) for the human genome research community has been greatly increased since the release of version 6. 0 last year. Thanks to the introduction of significant technical improvements, GDB has seen dramatic growth in the type and volume of information stored in the database. This article summarizes the types of data that are now available in the Genome Database, demonstrates how the database is interconnected with other biomedical resources on the World Wide Web, discusses how researchers can contribute new or updated information to the database, and describes our current efforts as well as planned improvements for the future
    corecore