7 research outputs found

    The Finite Element Method for the time-dependent Gross-Pitaevskii equation with angular momentum rotation

    Get PDF
    We consider the time-dependent Gross-Pitaevskii equation describing the dynamics of rotating Bose-Einstein condensates and its discretization with the finite element method. We analyze a mass conserving Crank-Nicolson-type discretization and prove corresponding a priori error estimates with respect to the maximum norm in time and the L2L^2- and energy-norm in space. The estimates show that we obtain optimal convergence rates under the assumption of additional regularity for the solution to the Gross-Pitaevskii equation. We demonstrate the performance of the method in numerical experiments

    On discrete ground states of rotating Bose-Einstein condensates

    Full text link
    The ground states of Bose-Einstein condensates in a rotating frame can be described as constrained minimizers of the Gross-Pitaevskii energy functional with an angular momentum term. In this paper we consider the corresponding discrete minimization problem in Lagrange finite element spaces of arbitrary polynomial order and we investigate the approximation properties of discrete ground states. In particular, we prove a priori error estimates of optimal order in the L2L^2- and H1H^1-norm, as well as for the ground state energy and the corresponding chemical potential. A central issue in the analysis of the problem is the missing uniqueness of ground states, which is mainly caused by the invariance of the energy functional under complex phase shifts. Our error analysis is therefore based on an Euler-Lagrange functional that we restrict to certain tangent spaces in which we have local uniqueness of ground states. This gives rise to an error decomposition that is ultimately used to derive the desired a priori error estimates. We also present numerical experiments to illustrate various aspects of the problem structure

    Uniform L∞L^\infty-bounds for energy-conserving higher-order time integrators for the Gross-Pitaevskii equation with rotation

    Full text link
    In this paper, we consider an energy-conserving continuous Galerkin discretization of the Gross-Pitaevskii equation with a magnetic trapping potential and a stirring potential for angular momentum rotation. The discretization is based on finite elements in space and time and allows for arbitrary polynomial orders. It was first analyzed in [O. Karakashian, C. Makridakis; SIAM J. Numer. Anal. 36(6):1779-1807, 1999] in the absence of potential terms and corresponding a priori error estimates were derived in 2D. In this work we revisit the approach in the generalized setting of the Gross-Pitaevskii equation with rotation and we prove uniform L∞L^\infty-bounds for the corresponding numerical approximations in 2D and 3D without coupling conditions between the spatial mesh size and the time step size. With this result at hand, we are in particular able to extend the previous error estimates to the 3D setting while avoiding artificial CFL conditions

    A two level approach for simulating Bose-Einstein condensates by localized orthogonal decomposition

    Full text link
    In this work, we consider the numerical computation of ground states and dynamics of single-component Bose-Einstein condensates (BECs). The corresponding models are spatially discretized with a multiscale finite element approach known as Localized Orthogonal Decomposition (LOD). Despite the outstanding approximation properties of such a discretization in the context of BECs, taking full advantage of it without creating severe computational bottlenecks can be tricky. In this paper, we therefore present two fully-discrete numerical approaches that are formulated in such a way that they take special account of the structure of the LOD spaces. One approach is devoted to the computation of ground states and another one for the computation of dynamics. A central focus of this paper is also the discussion of implementation aspects that are very important for the practical realization of the methods. In particular, we discuss the use of suitable data structures that keep the memory costs economical. The paper concludes with various numerical experiments in 1d, 2d and 3d that investigate convergence rates and approximation properties of the methods and which demonstrate their performance and computational efficiency, also in comparison to spectral and standard finite element approaches
    corecore