12,341 research outputs found

    Comparing Typical Opening Move Choices Made by Humans and Chess Engines

    Full text link
    The opening book is an important component of a chess engine, and thus computer chess programmers have been developing automated methods to improve the quality of their books. For chess, which has a very rich opening theory, large databases of high-quality games can be used as the basis of an opening book, from which statistics relating to move choices from given positions can be collected. In order to find out whether the opening books used by modern chess engines in machine versus machine competitions are ``comparable'' to those used by chess players in human versus human competitions, we carried out analysis on 26 test positions using statistics from two opening books one compiled from humans' games and the other from machines' games. Our analysis using several nonparametric measures, shows that, overall, there is a strong association between humans' and machines' choices of opening moves when using a book to guide their choices.Comment: 12 pages, 1 figure, 6 table

    Expertise effects in memory recall: A reply to Vicente and Wang

    Get PDF
    This article may not exactly replicate the final version published in the APA journal. It is not the copy of record.In the January 1998 Psychological Review, Vicente and Wang propose a "constraint attunement hypothesis" to explain the large effects of domain expertise upon memory recall observed in a number of task domains. They claim to find serious defects in alternative explanations of these effects which their theory overcomes. Re-examination of the evidence shows that their theory is not novel, but has been anticipated by those they criticize, and that other current published theories of the phenomena do not have the defects Vicente and Wang attribute to them. Vicente and Wang's views reflect underlying differences (a) about emphasis upon performance versus process in psychology, and (b) about how theories and empirical knowledge interact and progress with the development of a science

    Analysis of Hand Segmentation in the Wild

    Full text link
    A large number of works in egocentric vision have concentrated on action and object recognition. Detection and segmentation of hands in first-person videos, however, has less been explored. For many applications in this domain, it is necessary to accurately segment not only hands of the camera wearer but also the hands of others with whom he is interacting. Here, we take an in-depth look at the hand segmentation problem. In the quest for robust hand segmentation methods, we evaluated the performance of the state of the art semantic segmentation methods, off the shelf and fine-tuned, on existing datasets. We fine-tune RefineNet, a leading semantic segmentation method, for hand segmentation and find that it does much better than the best contenders. Existing hand segmentation datasets are collected in the laboratory settings. To overcome this limitation, we contribute by collecting two new datasets: a) EgoYouTubeHands including egocentric videos containing hands in the wild, and b) HandOverFace to analyze the performance of our models in presence of similar appearance occlusions. We further explore whether conditional random fields can help refine generated hand segmentations. To demonstrate the benefit of accurate hand maps, we train a CNN for hand-based activity recognition and achieve higher accuracy when a CNN was trained using hand maps produced by the fine-tuned RefineNet. Finally, we annotate a subset of the EgoHands dataset for fine-grained action recognition and show that an accuracy of 58.6% can be achieved by just looking at a single hand pose which is much better than the chance level (12.5%).Comment: Accepted at CVPR 201

    A pattern-recognition theory of search in expert problem solving

    Get PDF
    Understanding how look-ahead search and pattern recognition interact is one of the important research questions in the study of expert problem-solving. This paper examines the implications of the template theory (Gobet & Simon, 1996a), a recent theory of expert memory, on the theory of problem solving in chess. Templates are "chunks" (Chase & Simon, 1973) that have evolved into more complex data structures and that possess slots allowing values to be encoded rapidly. Templates may facilitate search in three ways: (a) by allowing information to be stored into LTM rapidly; (b) by allowing a search in the template space in addition to a search in the move space; and (c) by compensating loss in the "mind's eye" due to interference and decay. A computer model implementing the main ideas of the theory is presented, and simulations of its search behaviour are discussed. The template theory accounts for the slight skill difference in average depth of search found in chess players, as well as for other empirical data
    • …
    corecore