113,342 research outputs found

    Regularized Regression Problem in hyper-RKHS for Learning Kernels

    Full text link
    This paper generalizes the two-stage kernel learning framework, illustrates its utility for kernel learning and out-of-sample extensions, and proves {asymptotic} convergence results for the introduced kernel learning model. Algorithmically, we extend target alignment by hyper-kernels in the two-stage kernel learning framework. The associated kernel learning task is formulated as a regression problem in a hyper-reproducing kernel Hilbert space (hyper-RKHS), i.e., learning on the space of kernels itself. To solve this problem, we present two regression models with bivariate forms in this space, including kernel ridge regression (KRR) and support vector regression (SVR) in the hyper-RKHS. By doing so, it provides significant model flexibility for kernel learning with outstanding performance in real-world applications. Specifically, our kernel learning framework is general, that is, the learned underlying kernel can be positive definite or indefinite, which adapts to various requirements in kernel learning. Theoretically, we study the convergence behavior of these learning algorithms in the hyper-RKHS and derive the learning rates. Different from the traditional approximation analysis in RKHS, our analyses need to consider the non-trivial independence of pairwise samples and the characterisation of hyper-RKHS. To the best of our knowledge, this is the first work in learning theory to study the approximation performance of regularized regression problem in hyper-RKHS.Comment: 25 pages, 3 figure

    Classification theorems for the C*-algebras of graphs with sinks

    Get PDF
    We consider graphs E which have been obtained by adding one or more sinks to a fixed directed graph G. We classify the C*-algebra of E up to a very strong equivalence relation, which insists, loosely speaking, that C*(G) is kept fixed. The main invariants are vectors W_E : G^0 -> N which describe how the sinks are attached to G; more precisely, the invariants are the classes of the W_E in the cokernel of the map A-I, where A is the adjacency matrix of the graph G.Comment: 16 pages, uses XY-pi

    Multiclass Learning with Simplex Coding

    Get PDF
    In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows to generalize to multiple classes a relaxation approach commonly used in binary classification. In this framework, a relaxation error analysis can be developed avoiding constraints on the considered hypotheses class. Moreover, we show that in this setting it is possible to derive the first provably consistent regularized method with training/tuning complexity which is independent to the number of classes. Tools from convex analysis are introduced that can be used beyond the scope of this paper

    Classification of protein interaction sentences via gaussian processes

    Get PDF
    The increase in the availability of protein interaction studies in textual format coupled with the demand for easier access to the key results has lead to a need for text mining solutions. In the text processing pipeline, classification is a key step for extraction of small sections of relevant text. Consequently, for the task of locating protein-protein interaction sentences, we examine the use of a classifier which has rarely been applied to text, the Gaussian processes (GPs). GPs are a non-parametric probabilistic analogue to the more popular support vector machines (SVMs). We find that GPs outperform the SVM and na\"ive Bayes classifiers on binary sentence data, whilst showing equivalent performance on abstract and multiclass sentence corpora. In addition, the lack of the margin parameter, which requires costly tuning, along with the principled multiclass extensions enabled by the probabilistic framework make GPs an appealing alternative worth of further adoption

    StackInsights: Cognitive Learning for Hybrid Cloud Readiness

    Full text link
    Hybrid cloud is an integrated cloud computing environment utilizing a mix of public cloud, private cloud, and on-premise traditional IT infrastructures. Workload awareness, defined as a detailed full range understanding of each individual workload, is essential in implementing the hybrid cloud. While it is critical to perform an accurate analysis to determine which workloads are appropriate for on-premise deployment versus which workloads can be migrated to a cloud off-premise, the assessment is mainly performed by rule or policy based approaches. In this paper, we introduce StackInsights, a novel cognitive system to automatically analyze and predict the cloud readiness of workloads for an enterprise. Our system harnesses the critical metrics across the entire stack: 1) infrastructure metrics, 2) data relevance metrics, and 3) application taxonomy, to identify workloads that have characteristics of a) low sensitivity with respect to business security, criticality and compliance, and b) low response time requirements and access patterns. Since the capture of the data relevance metrics involves an intrusive and in-depth scanning of the content of storage objects, a machine learning model is applied to perform the business relevance classification by learning from the meta level metrics harnessed across stack. In contrast to traditional methods, StackInsights significantly reduces the total time for hybrid cloud readiness assessment by orders of magnitude
    corecore