24,681 research outputs found

    Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions

    Get PDF
    We present theorems which provide the existence of invariant whiskered tori in finite-dimensional exact symplectic maps and flows. The method is based on the study of a functional equation expressing that there is an invariant torus. We show that, given an approximate solution of the invariance equation which satisfies some non-degeneracy conditions, there is a true solution nearby. We call this an {\sl a posteriori} approach. The proof of the main theorems is based on an iterative method to solve the functional equation. The theorems do not assume that the system is close to integrable nor that it is written in action-angle variables (hence we can deal in a unified way with primary and secondary tori). It also does not assume that the hyperbolic bundles are trivial and much less that the hyperbolic motion can be reduced to constant. The a posteriori formulation allows us to justify approximate solutions produced by many non-rigorous methods (e.g. formal series expansions, numerical methods). The iterative method is not based on transformation theory, but rather on succesive corrections. This makes it possible to adapt the method almost verbatim to several infinite-dimensional situations, which we will discuss in a forthcoming paper. We also note that the method leads to fast and efficient algorithms. We plan to develop these improvements in forthcoming papers.Comment: To appear in JD

    Domains of analyticity of Lindstedt expansions of KAM tori in dissipative perturbations of Hamiltonian systems

    Full text link
    Many problems in Physics are described by dynamical systems that are conformally symplectic (e.g., mechanical systems with a friction proportional to the velocity, variational problems with a small discount or thermostated systems). Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We provide all details for maps, but we present also the modifications needed to obtain a direct proof for the case of differential equations. We consider a family of conformally symplectic maps fμ,ϵf_{\mu, \epsilon} defined on a 2d2d-dimensional symplectic manifold M\mathcal M with exact symplectic form Ω\Omega; we assume that fμ,ϵf_{\mu,\epsilon} satisfies fμ,ϵ∗Ω=λ(ϵ)Ωf_{\mu,\epsilon}^*\Omega=\lambda(\epsilon) \Omega. We assume that the family depends on a dd-dimensional parameter μ\mu (called drift) and also on a small scalar parameter ϵ\epsilon. Furthermore, we assume that the conformal factor λ\lambda depends on ϵ\epsilon, in such a way that for ϵ=0\epsilon=0 we have λ(0)=1\lambda(0)=1 (the symplectic case). We study the domains of analyticity in ϵ\epsilon near ϵ=0\epsilon=0 of perturbative expansions (Lindstedt series) of the parameterization of the quasi--periodic orbits of frequency ω\omega (assumed to be Diophantine) and of the parameter μ\mu. Notice that this is a singular perturbation, since any friction (no matter how small) reduces the set of quasi-periodic solutions in the system. We prove that the Lindstedt series are analytic in a domain in the complex ϵ\epsilon plane, which is obtained by taking from a ball centered at zero a sequence of smaller balls with center along smooth lines going through the origin. The radii of the excluded balls decrease faster than any power of the distance of the center to the origin

    Perturbative calculation of quasi-potential in non-equilibrium diffusions: a mean-field example

    Get PDF
    In stochastic systems with weak noise, the logarithm of the stationary distribution becomes proportional to a large deviation rate function called the quasi-potential. The quasi-potential, and its characterization through a variational problem, lies at the core of the Freidlin-Wentzell large deviations theory%.~\cite{freidlin1984}.In many interacting particle systems, the particle density is described by fluctuating hydrodynamics governed by Macroscopic Fluctuation Theory%, ~\cite{bertini2014},which formally fits within Freidlin-Wentzell's framework with a weak noise proportional to 1/N1/\sqrt{N}, where NN is the number of particles. The quasi-potential then appears as a natural generalization of the equilibrium free energy to non-equilibrium particle systems. A key physical and practical issue is to actually compute quasi-potentials from their variational characterization for non-equilibrium systems for which detailed balance does not hold. We discuss how to perform such a computation perturbatively in an external parameter λ\lambda, starting from a known quasi-potential for λ=0\lambda=0. In a general setup, explicit iterative formulae for all terms of the power-series expansion of the quasi-potential are given for the first time. The key point is a proof of solvability conditions that assure the existence of the perturbation expansion to all orders. We apply the perturbative approach to diffusive particles interacting through a mean-field potential. For such systems, the variational characterization of the quasi-potential was proven by Dawson and Gartner%. ~\cite{dawson1987,dawson1987b}. Our perturbative analysis provides new explicit results about the quasi-potential and about fluctuations of one-particle observables in a simple example of mean field diffusions: the Shinomoto-Kuramoto model of coupled rotators%. ~\cite{shinomoto1986}. This is one of few systems for which non-equilibrium free energies can be computed and analyzed in an effective way, at least perturbatively
    • …
    corecore