87 research outputs found

    Nové knihy

    Get PDF

    Computability in constructive type theory

    Get PDF
    We give a formalised and machine-checked account of computability theory in the Calculus of Inductive Constructions (CIC), the constructive type theory underlying the Coq proof assistant. We first develop synthetic computability theory, pioneered by Richman, Bridges, and Bauer, where one treats all functions as computable, eliminating the need for a model of computation. We assume a novel parametric axiom for synthetic computability and give proofs of results like Rice’s theorem, the Myhill isomorphism theorem, and the existence of Post’s simple and hypersimple predicates relying on no other axioms such as Markov’s principle or choice axioms. As a second step, we introduce models of computation. We give a concise overview of definitions of various standard models and contribute machine-checked simulation proofs, posing a non-trivial engineering effort. We identify a notion of synthetic undecidability relative to a fixed halting problem, allowing axiom-free machine-checked proofs of undecidability. We contribute such undecidability proofs for the historical foundational problems of computability theory which require the identification of invariants left out in the literature and now form the basis of the Coq Library of Undecidability Proofs. We then identify the weak call-by-value λ-calculus L as sweet spot for programming in a model of computation. We introduce a certifying extraction framework and analyse an axiom stating that every function of type ℕ → ℕ is L-computable.Wir behandeln eine formalisierte und maschinengeprüfte Betrachtung von Berechenbarkeitstheorie im Calculus of Inductive Constructions (CIC), der konstruktiven Typtheorie die dem Beweisassistenten Coq zugrunde liegt. Wir entwickeln erst synthetische Berechenbarkeitstheorie, vorbereitet durch die Arbeit von Richman, Bridges und Bauer, wobei alle Funktionen als berechenbar behandelt werden, ohne Notwendigkeit eines Berechnungsmodells. Wir nehmen ein neues, parametrisches Axiom für synthetische Berechenbarkeit an und beweisen Resultate wie das Theorem von Rice, das Isomorphismus Theorem von Myhill und die Existenz von Post’s simplen und hypersimplen Prädikaten ohne Annahme von anderen Axiomen wie Markov’s Prinzip oder Auswahlaxiomen. Als zweiten Schritt führen wir Berechnungsmodelle ein. Wir geben einen kompakten Überblick über die Definition von verschiedenen Berechnungsmodellen und erklären maschinengeprüfte Simulationsbeweise zwischen diesen Modellen, welche einen hohen Konstruktionsaufwand beinhalten. Wir identifizieren einen Begriff von synthetischer Unentscheidbarkeit relativ zu einem fixierten Halteproblem welcher axiomenfreie maschinengeprüfte Unentscheidbarkeitsbeweise erlaubt. Wir erklären solche Beweise für die historisch grundlegenden Probleme der Berechenbarkeitstheorie, die das Identifizieren von Invarianten die normalerweise in der Literatur ausgelassen werden benötigen und nun die Basis der Coq Library of Undecidability Proofs bilden. Wir identifizieren dann den call-by-value λ-Kalkül L als sweet spot für die Programmierung in einem Berechnungsmodell. Wir führen ein zertifizierendes Extraktionsframework ein und analysieren ein Axiom welches postuliert dass jede Funktion vom Typ N→N L-berechenbar ist

    Complexity Theory and the Operational Structure of Algebraic Programming Systems

    Get PDF
    An algebraic programming system is a language built from a fixed algebraic data abstraction and a selection of deterministic, and non-deterministic, assignment and control constructs. First, we give a detailed analysis of the operational structure of an algebraic data type, one which is designed to classify programming systems in terms of the complexity of their implementations. Secondly, we test our operational description by comparing the computations in deterministic and non-deterministic programming systems under certain space and time restrictions

    Logic of Negation-Complete Interactive Proofs (Formal Theory of Epistemic Deciders)

    Get PDF
    We produce a decidable classical normal modal logic of internalised negation-complete and thus disjunctive non-monotonic interactive proofs (LDiiP) from an existing logical counterpart of non-monotonic or instant interactive proofs (LiiP). LDiiP internalises agent-centric proof theories that are negation-complete (maximal) and consistent (and hence strictly weaker than, for example, Peano Arithmetic) and enjoy the disjunction property (like Intuitionistic Logic). In other words, internalised proof theories are ultrafilters and all internalised proof goals are definite in the sense of being either provable or disprovable to an agent by means of disjunctive internalised proofs (thus also called epistemic deciders). Still, LDiiP itself is classical (monotonic, non-constructive), negation-incomplete, and does not have the disjunction property. The price to pay for the negation completeness of our interactive proofs is their non-monotonicity and non-communality (for singleton agent communities only). As a normal modal logic, LDiiP enjoys a standard Kripke-semantics, which we justify by invoking the Axiom of Choice on LiiP's and then construct in terms of a concrete oracle-computable function. LDiiP's agent-centric internalised notion of proof can also be viewed as a negation-complete disjunctive explicit refinement of standard KD45-belief, and yields a disjunctive but negation-incomplete explicit refinement of S4-provability.Comment: Expanded Introduction. Added Footnote 4. Corrected Corollary 3 and 4. Continuation of arXiv:1208.184
    • …
    corecore