573 research outputs found

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Robust Control of Flapping-Wing in Micro Aerial Vehicle to have a Smooth Flapping Motion

    Get PDF
    This paper in first sections, will give a brief overview of both the purpose and the challenges facing the actuator and structure of Micromechanical Flying Insects (MFIs) and, in the last sections, an appropriate controller will developed for flapping motion. A hierarchical architecture that divides the control unit into three main levels is introduced. This approach break a complex control problem into a multi-level set of smaller control schemes, each of which is responsible for a clearly defined task. Also, the controller at each level can be designed independently of those in other levels. A fourbar mechanism for the wing displacement amplification, and a new system for fourbar mechanism actuation (wing actuation) is developed. We will develop a flexible beam with piezoelectric actuators and sensor (called Smart Beam) that will used to excite the fourbar mechanism for flapping mode of flight. The Frequency Response Function (FRF) of the smart beam was obtained from a Finite Element (FE) model and experimental system identification. The corresponding transfer function was derived from the mu synthesis and several robust controllers were then designed to control the beam to reach a smooth flapping motion. Besides excitation of the fourbar mechanism, the Smart beam will be used to control of noise and disturbance in the structure of the wing system

    Living IoT: A Flying Wireless Platform on Live Insects

    Full text link
    Sensor networks with devices capable of moving could enable applications ranging from precision irrigation to environmental sensing. Using mechanical drones to move sensors, however, severely limits operation time since flight time is limited by the energy density of current battery technology. We explore an alternative, biology-based solution: integrate sensing, computing and communication functionalities onto live flying insects to create a mobile IoT platform. Such an approach takes advantage of these tiny, highly efficient biological insects which are ubiquitous in many outdoor ecosystems, to essentially provide mobility for free. Doing so however requires addressing key technical challenges of power, size, weight and self-localization in order for the insects to perform location-dependent sensing operations as they carry our IoT payload through the environment. We develop and deploy our platform on bumblebees which includes backscatter communication, low-power self-localization hardware, sensors, and a power source. We show that our platform is capable of sensing, backscattering data at 1 kbps when the insects are back at the hive, and localizing itself up to distances of 80 m from the access points, all within a total weight budget of 102 mg.Comment: Co-primary authors: Vikram Iyer, Rajalakshmi Nandakumar, Anran Wang, In Proceedings of Mobicom. ACM, New York, NY, USA, 15 pages, 201

    Aquatic escape for micro-aerial vehicles

    Get PDF
    As our world is experiencing climate changes, we are in need of better monitoring technologies. Most of our planet is covered with water and robots will need to move in aquatic environments. A mobile robotic platform that possesses efficient locomotion and is capable of operating in diverse scenarios would give us an advantage in data collection that can validate climate models, emergency relief and experimental biological research. This field of application is the driving vector of this robotics research which aims to understand, produce and demonstrate solutions of aerial-aquatic autonomous vehicles. However, small robots face major challenges in operating both in water and in air, as well as transition between those fluids, mainly due to the difference of density of the media. This thesis presents the developments of new aquatic locomotion strategies at small scales that further enlarge the operational domain of conventional platforms. This comprises flight, shallow water locomotion and the transition in-between. Their operating principles, manufacturing methods and control methods are discussed and evaluated in detail. I present multiple unique aerial-aquatic robots with various water escape mechanisms, spanning over different scales. The five robotic platforms showcased share similarities that are compared. The take-off methods are analysed carefully and the underlying physics principles put into light. While all presented research fulfils a similar locomotion objective - i.e aerial and aquatic motion - their relevance depends on the environmental conditions and supposed mission. As such, the performance of each vehicle is discussed and characterised in real, relevant conditions. A novel water-reactive fuel thruster is developed for impulsive take-off, allowing consecutive and multiple jump-gliding from the water surface in rough conditions. At a smaller scale, the escape of a milligram robotic bee is achieved. In addition, a new robot class is demonstrated, that employs the same wings for flying as for passive surface sailing. This unique capability allows the flexibility of flight to be combined with long-duration surface missions, enabling autonomous prolonged aquatic monitoring.Open Acces

    Development of a smart weed detector and selective herbicide sprayer

    Get PDF
    Abstract: The fourth industrial revolution has brought about tremendous advancements in various sectors of the economy including the agricultural domain. Aimed at improving food production and alleviating poverty, these technological advancements through precision agriculture has ushered in optimized agricultural processes, real-time analysis and monitoring of agricultural data. The detrimental effects of applying agrochemicals in large or hard-to-reach farmlands and the need to treat a specific class of weed with a particular herbicide for effective weed elimination gave rise to the necessity of this research work...M.Ing. (Mechanical Engineering

    Feature Papers of Drones - Volume I

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 1–8 are devoted to the developments of drone design, where new concepts and modeling strategies as well as effective designs that improve drone stability and autonomy are introduced. Articles 9–16 focus on the communication aspects of drones as effective strategies for smooth deployment and efficient functioning are required. Therefore, several developments that aim to optimize performance and security are presented. In this regard, one of the most directly related topics is drone swarms, not only in terms of communication but also human-swarm interaction and their applications for science missions, surveillance, and disaster rescue operations. To conclude with the volume I related to drone improvements, articles 17–23 discusses the advancements associated with autonomous navigation, obstacle avoidance, and enhanced flight plannin

    Integration of aerial and terrestrial locomotion modes in a bioinspired robotic system

    Get PDF
    In robotics, locomotion is a fundamental task for the development of high-level activities such as navigation. For a robotic system, the challenge of evading environmental obstacles depends both on its physical capabilities and on the strategies followed to achieve it. Thus, a robot with the ability to develop several modes of locomotion (walking, flying or swimming) has a greater probability of success in achieving its goal than a robot that develops only one. In nature, Hymenoptera insects use terrestrial and aerial modes of locomotion to carry out their activities. Mimicry the physical capabilities of these insects opens the possibility of improvements in the area of robotic locomotion. Therefore, this work seeks to generate a bio-inspired robotic system that integrates the terrestrial and aerial modes of locomotion. The methodology used in this research project has considered the anatomical study and characterization of Hymenoptera insects locomotion, the proposal of conceptual models that integrate terrestrial and aerial modes locomotion, the construction of a physical platform and experimental testing of the system. In addition, a gait generation approach based on an artificial nervous system of coupled nonlinear oscillators has been proposed. This approach has resulted in the generation of a coherent and functional gait pattern that, in combination with the flight capabilities of the system, has constituted an aero-terrestrial robot. The results obtained in this work include the construction of a bioinspired physical platform, the generation of the gait process using an artificial nervous system and the experimental tests on the integration of aero-terrestrial locomotion.Conacyt - Becario Naciona

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones
    corecore