2 research outputs found

    A Modified Implementation of Tristate Inverter Based Static Master-Slave Flip-Flop with Improved Power-Delay-Area Product

    Get PDF
    The paper introduces novel architectures for implementation of fully static master-slave flip-flops for low power, high performance, and high density. Based on the proposed structure, traditional C2MOS latch (tristate inverter/clocked inverter) based flip-flop is implemented with fewer transistors. The modified C2MOS based flip-flop designs mC2MOSff1 and mC2MOSff2 are realized using only sixteen transistors each while the number of clocked transistors is also reduced in case of mC2MOSff1. Postlayout simulations indicate that mC2MOSff1 flip-flop shows 12.4% improvement in PDAP (power-delay-area product) when compared with transmission gate flip-flop (TGFF) at 16X capacitive load which is considered to be the best design alternative among the conventional master-slave flip-flops. To validate the correct behaviour of the proposed design, an eight bit asynchronous counter is designed to layout level. LVS and parasitic extraction were carried out on Calibre, whereas layouts were implemented using IC station (Mentor Graphics). HSPICE simulations were used to characterize the transient response of the flip-flop designs in a 180 nm/1.8 V CMOS technology. Simulations were also performed at 130 nm, 90 nm, and 65 nm to reveal the scalability of both the designs at modern process nodes

    The Effect of the System Specification on the Optimal Selection of Clocked Storage Elements

    No full text
    Abstract—This paper represents a departure from the conventional methods of design and analysis of clocked storage elements that rely on minimizing a fixed energy–delay metric. Instead it establishes a systematic comparison in the energy–delay design space based on the parameters of the surrounding blocks. We define the composite energy-efficient characteristic over all storage element topologies and identify the most efficient storage element depending on its position on the composite characteristic relative to other topologies within a pipeline stage. Thus, we show that an optimal design could use a mixed variety of clocked storage elements (CSEs) depending on their placement in the pipeline and critical path. Since a well-designed system has hardware intensities balanced for a given cycle, a CSE choice will be made depending on the pipeline and path intensities. We show that a meaningful comparison can be carried out only by acknowledging that the optimal design and choice of the clocked storage elements depends heavily on the application, and by analyzing the energy and delay of the clocked storage elements in context of this application. The analysis in the energy–delay space allows us to understand some intuitive design choices in a quantitative way and to identify the optimal storage element topologies for an arbitrary system specification. Index Terms—Clocked storage elements, energy delay optimization, flip-flops, VLSI, power consumption, registers, circuit tuning, circuit optimization, delay effects, circuit analysis, integrated circuit design, CMOS digital integrated circuits, energy measurement
    corecore