3,992 research outputs found

    Truss Decomposition in Massive Networks

    Full text link
    The k-truss is a type of cohesive subgraphs proposed recently for the study of networks. While the problem of computing most cohesive subgraphs is NP-hard, there exists a polynomial time algorithm for computing k-truss. Compared with k-core which is also efficient to compute, k-truss represents the "core" of a k-core that keeps the key information of, while filtering out less important information from, the k-core. However, existing algorithms for computing k-truss are inefficient for handling today's massive networks. We first improve the existing in-memory algorithm for computing k-truss in networks of moderate size. Then, we propose two I/O-efficient algorithms to handle massive networks that cannot fit in main memory. Our experiments on real datasets verify the efficiency of our algorithms and the value of k-truss.Comment: VLDB201

    A Breezing Proof of the KMW Bound

    Full text link
    In their seminal paper from 2004, Kuhn, Moscibroda, and Wattenhofer (KMW) proved a hardness result for several fundamental graph problems in the LOCAL model: For any (randomized) algorithm, there are input graphs with nn nodes and maximum degree Δ\Delta on which Ω(min{logn/loglogn,logΔ/loglogΔ})\Omega(\min\{\sqrt{\log n/\log \log n},\log \Delta/\log \log \Delta\}) (expected) communication rounds are required to obtain polylogarithmic approximations to a minimum vertex cover, minimum dominating set, or maximum matching. Via reduction, this hardness extends to symmetry breaking tasks like finding maximal independent sets or maximal matchings. Today, more than 1515 years later, there is still no proof of this result that is easy on the reader. Setting out to change this, in this work, we provide a fully self-contained and simple\mathit{simple} proof of the KMW lower bound. The key argument is algorithmic, and it relies on an invariant that can be readily verified from the generation rules of the lower bound graphs.Comment: 21 pages, 6 figure

    Distributed Connectivity Decomposition

    Full text link
    We present time-efficient distributed algorithms for decomposing graphs with large edge or vertex connectivity into multiple spanning or dominating trees, respectively. As their primary applications, these decompositions allow us to achieve information flow with size close to the connectivity by parallelizing it along the trees. More specifically, our distributed decomposition algorithms are as follows: (I) A decomposition of each undirected graph with vertex-connectivity kk into (fractionally) vertex-disjoint weighted dominating trees with total weight Ω(klogn)\Omega(\frac{k}{\log n}), in O~(D+n)\widetilde{O}(D+\sqrt{n}) rounds. (II) A decomposition of each undirected graph with edge-connectivity λ\lambda into (fractionally) edge-disjoint weighted spanning trees with total weight λ12(1ε)\lceil\frac{\lambda-1}{2}\rceil(1-\varepsilon), in O~(D+nλ)\widetilde{O}(D+\sqrt{n\lambda}) rounds. We also show round complexity lower bounds of Ω~(D+nk)\tilde{\Omega}(D+\sqrt{\frac{n}{k}}) and Ω~(D+nλ)\tilde{\Omega}(D+\sqrt{\frac{n}{\lambda}}) for the above two decompositions, using techniques of [Das Sarma et al., STOC'11]. Moreover, our vertex-connectivity decomposition extends to centralized algorithms and improves the time complexity of [Censor-Hillel et al., SODA'14] from O(n3)O(n^3) to near-optimal O~(m)\tilde{O}(m). As corollaries, we also get distributed oblivious routing broadcast with O(1)O(1)-competitive edge-congestion and O(logn)O(\log n)-competitive vertex-congestion. Furthermore, the vertex connectivity decomposition leads to near-time-optimal O(logn)O(\log n)-approximation of vertex connectivity: centralized O~(m)\widetilde{O}(m) and distributed O~(D+n)\tilde{O}(D+\sqrt{n}). The former moves toward the 1974 conjecture of Aho, Hopcroft, and Ullman postulating an O(m)O(m) centralized exact algorithm while the latter is the first distributed vertex connectivity approximation

    The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies

    Full text link
    Boolean satisfiability problems are an important benchmark for questions about complexity, algorithms, heuristics and threshold phenomena. Recent work on heuristics, and the satisfiability threshold has centered around the structure and connectivity of the solution space. Motivated by this work, we study structural and connectivity-related properties of the space of solutions of Boolean satisfiability problems and establish various dichotomies in Schaefer's framework. On the structural side, we obtain dichotomies for the kinds of subgraphs of the hypercube that can be induced by the solutions of Boolean formulas, as well as for the diameter of the connected components of the solution space. On the computational side, we establish dichotomy theorems for the complexity of the connectivity and st-connectivity questions for the graph of solutions of Boolean formulas. Our results assert that the intractable side of the computational dichotomies is PSPACE-complete, while the tractable side - which includes but is not limited to all problems with polynomial time algorithms for satisfiability - is in P for the st-connectivity question, and in coNP for the connectivity question. The diameter of components can be exponential for the PSPACE-complete cases, whereas in all other cases it is linear; thus, small diameter and tractability of the connectivity problems are remarkably aligned. The crux of our results is an expressibility theorem showing that in the tractable cases, the subgraphs induced by the solution space possess certain good structural properties, whereas in the intractable cases, the subgraphs can be arbitrary
    corecore