3,009 research outputs found

    HiFFUTs for high temperature ultrasound

    Get PDF
    Flexural ultrasonic transducers have been widely used as proximity sensors and as part of industrial metrology systems. However, there is demand from industry for these transducers to have the capability to operate in both liquid and gas, at temperatures of 100-200°C and higher, significantly greater than those tolerated by current flexural transducers. Furthermore, flexural transducers tend to be designed for operation up to around 50 kHz, and the ability to operate at higher frequencies will open up new application and research areas. A limitation of current flexural transducers is the electromechanical driving element, usually a lead zirconate titanate piezoelectric ceramic, which experiences significantly reduced performance as temperature is increased. This investigation proposes a new type of flexural transducer, the HiFFUT, a high frequency flexural ultrasonic transducer, comprising a bismuth titanate ceramic for operation at high temperatures, that could be replaced by another suitable high Curie temperature piezoelectric material if required, bonded to the membrane with a high temperature adhesive. The dynamic characteristics of the HiFFUT are studied as a function of temperature, providing insights into its usefulness for industrial applications

    Venting in the comparative study of flexural ultrasonic transducers to improve resilience at elevated environmental pressure levels

    Get PDF
    The classical form of a flexural ultrasonic transducer is a piezoelectric ceramic disc bonded to a circular metallic membrane. This ceramic induces vibration modes of the membrane for the generation and detection of ultrasound. The transducer has been popular for proximity sensing and metrology, particularly for industrial applications at ambient pressures around 1 bar. The classical flexural ultrasonic transducer is not designed for operation at elevated pressures, such as those associated with natural gas transportation or petrochemical processes. It is reliant on a rear seal which forms an internal air cavity, making the transducer susceptible to deformation through pressure imbalance. The application potential of the classical transducer is therefore severely limited. In this study, a venting strategy which balances the pressure between the internal transducer structure and the external environment is studied through experimental methods including electrical impedance analysis and pitch-catch ultrasound measurement. The vented transducer is compared with a commercial equivalent in air towards 90 bar. Venting is shown to be viable for a new generation of low cost and robust industrial ultrasonic transducers, suitable for operation at high environmental pressure levels

    The high frequency flexural ultrasonic transducer for transmitting and receiving ultrasound in air

    Get PDF
    Flexural ultrasonic transducers are robust and low cost sensors that are typically used in industry for distance ranging, proximity sensing and flow measurement. The operating frequencies of currently available commercial flexural ultrasonic transducers are usually below 50 kHz. Higher operating frequencies would be particularly beneficial for measurement accuracy and detection sensitivity. In this paper, design principles of High Frequency Flexural Ultrasonic Transducers (HiFFUTs), guided by the classical plate theory and finite element analysis, are reported. The results show that the diameter of the piezoelectric disc element attached to the flexing plate of the HiFFUT has a significant influence on the transducer's resonant frequency, and that an optimal diameter for a HiFFUT transmitter alone is different from that for a pitch-catch ultrasonic system consisting of both a HiFFUT transmitter and a receiver. By adopting an optimal piezoelectric diameter, the HiFFUT pitch-catch system can produce an ultrasonic signal amplitude greater than that of a non-optimised system by an order of magnitude. The performance of a prototype HiFFUT is characterised through electrical impedance analysis, laser Doppler vibrometry, and pressure-field microphone measurement, before the performance of two new HiFFUTs in a pitch-catch configuration is compared with that of commercial transducers. The prototype HiFFUT can operate efficiently at a frequency of 102.1 kHz as either a transmitter or a receiver, with comparable output amplitude, wider bandwidth, and higher directivity than commercially available transducers of similar construction

    Measurement using flexural ultrasonic transducers in high pressure environments

    Get PDF
    The flexural ultrasonic transducer comprises a metallic membrane to which an active element such as a piezoelectric ceramic is attached. The normal modes of the membrane are exploited to generate and receive the desired ultrasonic wave. Flexural ultrasonic transducers are popular due to their ability to couple to different media without requiring matching layers. There is growing demand for ultrasound measurement using flexural ultrasonic transducers in high pressure environments, such as in gas metering. However, their sealing increases the risk of transducer deformation as the pressure level is raised, due to pressure imbalance between the internal cavity of the transducer and the external environment. In this study, a novel form of flexural ultrasonic transducer for operation in high pressure environments, those above 100 bar, is shown alongside key measurement strategies. Different methods can be used to enable pressure equalization between the internal cavity and the external environment, one of which is venting and used in this study. Dynamic performance is monitored via pitch-catch ultrasound measurement in air up to 130 bar. The results suggest the suitability of the vented transducer for operation in high pressure environments compared to the classical flexural ultrasonic transducer, constituting a significant development in ultrasonic measurement

    The influence of air pressure on the dynamics of flexural ultrasonic transducers

    Get PDF
    The flexural ultrasonic transducer comprises a piezoelectric ceramic disc bonded to a membrane. The vibrations of the piezoelectric ceramic disc induce flexural modes in the membrane, producing ultrasound waves. The transducer is principally utilized for proximity or flow measurement, designed for operation at atmospheric pressure conditions. However, there is rapidly growing industrial demand for the flexural ultrasonic transducer in applications including water metering or in petrochemical plants where the pressure levels of the gas or liquid environment can approach 100 bar. In this study, characterization methods including electrical impedance analysis and pitch-catch ultrasound measurement are employed to demonstrate the dynamic performance of flexural ultrasonic transducers in air at elevated pressures approaching 100 bar. Measurement principles are discussed, in addition to modifications to the transducer design for ensuring resilience at increasing air pressure levels. The results highlight the importance of controlling the parameters of the measurement environment and show that although the conventional design of flexural ultrasonic transducer can exhibit functionality towards 100 bar, its dynamic performance is unsuitable for accurate ultrasound measurement. It is anticipated that this research will initiate new developments in ultrasound measurement systems for fluid environments at elevated pressures

    Modal analysis and nonlinear characterization of an airborne power ultrasonic transducer with rectangular plate radiator

    Get PDF
    Some industrial processes like particle agglomeration or food dehydration among others can be enhanced by the use of power ultrasonic technologies. These technologies are based on an airborne power ultrasonic transducer (APUT) constituted by a pre-stressed Langevin-type transducer, a mechanical amplifier and an extensive plate radiator. In order to produce the desired effects in industrial processing, the transducer has to vibrate in an extensional mode driving an extensive radiator in the desired flexural mode with high amplitude displacements. Due to the generation of these high amplitude displacements in the radiator surfaces, non-linear effects like frequency shifts, hysteresis or modal interactions, among others, may be produced in the transducer behavior. When any nonlinear effect appears, when applying power, the stability and efficiency of this ultrasonic technology decreases, and the transducer may be damaged depending on the excitation power level and the nature of the nonlinearity. In this paper, an APUT with flat rectangular radiator is presented, as the active part of an innovative system with stepped reflectors. The nonlinear behavior of the APUT has been characterized numerically and experimentally in case of the modal analysis and experimentally in the case of dynamic analysis. According to the results obtained after the experiments, no modal interactions are expected, nor do other nonlinear effects

    The influence of piezoceramic stack location on nonlinear behavior of langevin transducers

    Get PDF
    Power ultrasonic applications such as cutting, welding, and sonochemistry often use Langevin transducers to generate power ultrasound. Traditionally, it has been proposed that the piezoceramic stack of a Langevin transducer should be located in the nodal plane of the longitudinal mode of vibration, ensuring that the piezoceramic elements are positioned under a uniform stress during transducer operation, maximizing element efficiency and minimizing piezoceramic aging. However, this general design rule is often partially broken during the design phase if features such as a support flange or multiple piezoceramic stacks are incorporated into the transducer architecture. Meanwhile, it has also been well documented in the literature that power ultrasonic devices driven at high excitation levels exhibit nonlinear behaviors similar to those observed in Duffing-type systems, such as resonant frequency shifts, the jump phenomenon, and hysteretic regions. This study investigates three Langevin transducers with different piezoceramic stack locations by characterizing their linear and nonlinear vibrational responses to understand how the stack location influences nonlinear behavior

    Dynamic nonlinearity in piezoelectric flexural ultrasonic transducers

    Get PDF
    Recent studies of the electro-mechanical behavior of flexural ultrasonic transducers have shown that their response can be considered as three distinct characteristic regions, the first building towards a steady state, followed by oscillation at the driving frequency in the steady state, before an exponential decay from the steady state at the transducer's dominant resonance frequency, once the driving force is removed. Despite the widespread industrial use of these transducers as ultrasonic proximity sensors, there is little published information on their vibration characteristics under different operating conditions. Flexual transducers are composed of a piezoelectric ceramic disc bonded to the inner surface of a metallic cap, the membrane of which bends in response to the high-frequency ceramic vibrations of the ceramic. Piezoelectric devices can be subject to nonlinear behavior, but there is no reported detail of the nonlinearity in flexural transducers. Experimental investigation through laser Doppler vibrometry shows strong nonlinearity in the vibration response, where resonance frequency reduces with increasing vibration amplitude

    Dynamics characterisation of cymbal transducers for power ultrasonics applications

    Get PDF
    A class V cymbal flextensional transducer is composed of a piezoceramic disc sandwiched between two cymbal-shaped shell end-caps. Depending on the type of piezoceramic, there exists a maximum voltage that can be reached without depolarisation, but also, at higher voltage levels, amplitude saturation can occur. In addition, there is a restriction imposed by the mechanical strength of the bonding agent. The effects of input voltage level on the vibration response of two cymbal transducers are studied. The first cymbal transducer has a standard configuration of end-caps bonded to a piezoceramic disc, whereas the second cymbal transducer is a modified design which includes a metal ring to improve the mechanical coupling with the end-caps, to enable the transducer to operate at higher voltages, thereby generating higher displacement amplitudes. This would allow the transducer to be suitable for power ultrasonics applications. Furthermore, the input voltages to each transducer are increased incrementally to determine the linearity in the dynamic responses. Through a combination of numerical modelling and experiments, it is shown how the improved mechanical coupling in the modified cymbal transducer allows higher vibration amplitudes to be reached

    Effect of Metallic Waste Addition on the Physical and Mechanical Properties of Cement-Based Mortars

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).This paper investigates the influence of the type and amount of recycled metallic waste on the physical and mechanical properties of cement-based mortars. The physical and mechanical properties of cement mortars, containing four different amounts of metallic waste (ranged 4 to 16% by cement weight), were evaluated by measuring the bulk density, total porosity, flexural and compressive resistance, and dynamic elastic modulus by ultrasonic tests. All the properties were measured on test specimens under two curing ages: 7 and 28 days. Additionally, the morphological properties and elemental composition of the cement and metallic waste were evaluated by using Scanning Electron Microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), and X-ray fluorescence (XRF). Main results showed that the addition of metallic waste reduced the bulk density and increased the porosity of the cement-based mortars. Furthermore, it was observed that flexural and compressive strength proportionally increased with the metallic waste addition. Likewise, it was proven that elastic modulus, obtained by compressive and ultrasonic tests, increases with the metallic waste amount. Finally, based on a probability analysis, it was confirmed that the addition of metallic waste did not present a significant effect on the mechanical performance of the cement-based mortars.Peer reviewedFinal Published versio
    • …
    corecore