22,224 research outputs found

    Is Having a Unique Equilibrium Robust?

    Get PDF
    We investigate whether having a unique equilibrium (or a given number of equilibria) is robust to perturbation of the payoffs, both for Nash equilibrium and correlated equilibrium. We show that the set of n-player finite games with a unique correlated equilibrium is open, while this is not true of Nash equilibrium for n>2. The crucial lemma is that a unique correlated equilibrium is a quasi-strict Nash equilibrium. Related results are studied. For instance, we show that generic two-person zero-sum games have a unique correlated equilibrium and that, while the set of symmetric bimatrix games with a unique symmetric Nash equilibrium is not open, the set of symmetric bimatrix games with a unique and quasi-strict symmetric Nash equilibrium is

    Nash Equilibria in the Response Strategy of Correlated Games

    Full text link
    In nature and society problems arise when different interests are difficult to reconcile, which are modeled in game theory. While most applications assume uncorrelated games, a more detailed modeling is necessary to consider the correlations that influence the decisions of the players. The current theory for correlated games, however, enforces the players to obey the instructions from a third party or "correlation device" to reach equilibrium, but this cannot be achieved for all initial correlations. We extend here the existing framework of correlated games and find that there are other interesting and previously unknown Nash equilibria that make use of correlations to obtain the best payoff. This is achieved by allowing the players the freedom to follow or not to follow the suggestions of the correlation device. By assigning independent probabilities to follow every possible suggestion, the players engage in a response game that turns out to have a rich structure of Nash equilibria that goes beyond the correlated equilibrium and mixed-strategy solutions. We determine the Nash equilibria for all possible correlated Snowdrift games, which we find to be describable by Ising Models in thermal equilibrium. We believe that our approach paves the way to a study of correlations in games that uncovers the existence of interesting underlying interaction mechanisms, without compromising the independence of the players

    On the Hardness of Signaling

    Full text link
    There has been a recent surge of interest in the role of information in strategic interactions. Much of this work seeks to understand how the realized equilibrium of a game is influenced by uncertainty in the environment and the information available to players in the game. Lurking beneath this literature is a fundamental, yet largely unexplored, algorithmic question: how should a "market maker" who is privy to additional information, and equipped with a specified objective, inform the players in the game? This is an informational analogue of the mechanism design question, and views the information structure of a game as a mathematical object to be designed, rather than an exogenous variable. We initiate a complexity-theoretic examination of the design of optimal information structures in general Bayesian games, a task often referred to as signaling. We focus on one of the simplest instantiations of the signaling question: Bayesian zero-sum games, and a principal who must choose an information structure maximizing the equilibrium payoff of one of the players. In this setting, we show that optimal signaling is computationally intractable, and in some cases hard to approximate, assuming that it is hard to recover a planted clique from an Erdos-Renyi random graph. This is despite the fact that equilibria in these games are computable in polynomial time, and therefore suggests that the hardness of optimal signaling is a distinct phenomenon from the hardness of equilibrium computation. Necessitated by the non-local nature of information structures, en-route to our results we prove an "amplification lemma" for the planted clique problem which may be of independent interest

    Quantum game players can have advantage without discord

    Full text link
    The last two decades have witnessed a rapid development of quantum information processing, a new paradigm which studies the power and limit of "quantum advantages" in various information processing tasks. Problems such as when quantum advantage exists, and if existing, how much it could be, are at a central position of these studies. In a broad class of scenarios, there are, implicitly or explicitly, at least two parties involved, who share a state, and the correlation in this shared state is the key factor to the efficiency under concern. In these scenarios, the shared \emph{entanglement} or \emph{discord} is usually what accounts for quantum advantage. In this paper, we examine a fundamental problem of this nature from the perspective of game theory, a branch of applied mathematics studying selfish behaviors of two or more players. We exhibit a natural zero-sum game, in which the chance for any player to win the game depends only on the ending correlation. We show that in a certain classical equilibrium, a situation in which no player can further increase her payoff by any local classical operation, whoever first uses a quantum computer has a big advantage over its classical opponent. The equilibrium is fair to both players and, as a shared correlation, it does not contain any discord, yet a quantum advantage still exists. This indicates that at least in game theory, the previous notion of discord as a measure of non-classical correlation needs to be reexamined, when there are two players with different objectives.Comment: 15 page
    corecore