388 research outputs found

    Finite temperature properties of the triangular lattice t-J model, applications to Nax_xCoO2_2

    Full text link
    We present a finite temperature (TT) study of the t-J model on the two-dimensional triangular lattice for the negative hopping tt, as relevant for the electron-doped Nax_xCoO2_2 (NCO). To understand several aspects of this system, we study the TT-dependent chemical potential, specific heat, magnetic susceptibility, and the dynamic Hall-coefficient across the entire doping range. We show systematically, how this simplest model for strongly correlated electrons describes a crossover as function of doping (xx) from a Pauli-like weakly spin-correlated metal close to the band-limit (density n=2n=2) to the Curie-Weiss metallic phase (1.5<n<1.751.5<n<1.75) with pronounced anti-ferromagnetic (AFM) correlations at low temperatures and Curie-Weiss type behavior in the high-temperature regime. Upon further reduction of the doping, a new energy scale, dominated by spin-interactions (JJ) emerges (apparent both in specific heat and susceptibility) and we identify an effective interaction Jeff(x)J_{eff}(x), valid across the entire doping range. This is distinct from Anderson's formula, as we choose here t<0t<0, hence the opposite sign of the usual Nagaoka-ferromagnetic situation. This expression includes the subtle effect of weak kinetic AFM - as encountered in the infinitely correlated situation (U=U=\infty). By explicit computation of the Kubo-formulae, we address the question of practical relevance of the high-frequency expression for the Hall coefficient RHR_H^*. We hope to clarify some open questions concerning the applicability of the t-J model to real experimental situations through this study

    On the Ytterbium Valence and the Physical Properties in Selected Intermetallic Phases

    Get PDF
    The present review summarizes important aspects of the crystal chemistry of ytterbium-based intermetallic compounds along with a selection of their outstanding physical properties. These originate in many cases from the ytterbium valence. Different valence states are possible here, divalent (4f14), intermediate-valent, or trivalent (4f13) ytterbium, resulting in simple diamagnetic, Pauli or Curie−Weiss paramagnetic, or valence fluctuating behavior. Especially, some of the Yb3+ intermetallics have gained deep interest due to their Kondo or heavy Fermion ground states. We have summarized their property investigations using magnetic and transport measurements, specific heat data, NMR, ESR, and Mössbauer spectroscopy, elastic and inelastic neutron scattering, and XAS data as well as detailed thermoelectric measurements

    Neutron Star Electromagnetic Field Structure

    Get PDF
    This dissertation investigates the neutron star magnetic field from generation to radiation production. We have investigated the spontaneous magnetization process to explain the magnetic field generation. This magnetization is then applied to determine the electromagnetic field structure of the neutron star. As an application of these two calculations, we briefly investigate several radiation mechanisms that are closely related to stellar magnetic fields. Neutron star magnetic field generation is studied through the spontaneous magnetization process. This process was studied in the non-relativistic, ultra-relativistic, and rigorous relativistic dispersion regimes for the neutrons. Both analytical and numerical approaches show that a phase transition is present for a density near 1038cm−3 and a temperature near 109K. This density is consistent with most neutron star models. Using the magnetized interior, the neutron star electromagnetic field is derived from the vector potential. The derived magnetic field is more complicated than just a magnetic dipole which is the most common approximation to the magnetic field. The electromagnetic field structure is derived under the Goldreich-Julian approach. Finally this electromagnetic field is applied to three radiation mechanisms in attempt to understand the high-frequency radiation observed from neutron stars. The processes studied are curvature radiation, pair production, and synchrotron radiation. The curvature radiation is most greatly affected by the electromagnetic field because the radius of curvature is reduced by a factor 10 when just the quadrapole term is included. This directly affects the number of photons energetic enough to undergo pair production. These electron-positron pairs are also more energetic and the synchrotron radiation spectrum is affected by not only the injection angle but the magnetic field curvature as well

    Effect of proton irradiation on the normal state low-energy excitations of Ba(Fe1x_{1-x}Rhx_x)2_2As2_2 superconductors

    Get PDF
    We present a \asnmr Nuclear Magnetic Resonance (NMR) and resistivity study of the effect of 5.5 MeV proton irradiation on the optimal electron doped (x=x= 0.068) and overdoped (x=x= 0.107) Ba(Fe1x_{1-x}Rhx_x)2_2As2_2 iron based superconductors. While the proton induced defects only mildly suppress the critical temperature and increase residual resistivity in both compositions, sizable broadening of the NMR spectra was observed in all the irradiated samples at low temperature. The effect is significantly stronger in the optimally doped sample where the Curie Weiss temperature dependence of the line width suggests the onset of ferromagnetic correlations coexisting with superconductivity at the nanoscale. 1/T2_2 measurements revealed that the energy barrier characterizing the low energy spin fluctuations of these compounds is enhanced upon proton irradiation, suggesting that the defects are likely slowing down the fluctuations between (0,π)0,\pi) and (π\pi,0) nematic ground states.Comment: 9 pages, 9 figure

    Study of the effects of magnetic field on the properties of combustion synthesized iron oxide nanoparticles

    Get PDF
    Nanosized chain-like aggregates were developed in an iron pentacarbonyl-carbon monoxide (Fe(CO) 5 ¨C CO) air diffusion flame system. Magnetic field was applied around the diffusion flame using an electromagnet with an intensity of 0.4 Tesla. Transmission Electron Microscopy (TEM) analysis was performed to observe the behavior of the chains formed and to study the effect of magnetic field on these chains. These chain aggregates consist mainly of Fe2O3, which play a vital role in magnetic storage devices. Diffraction pattern analysis and X-ray Photon Spectroscopy (XPS) were carried out to confirm that the chain aggregates consist of mainly ¦Ã-Fe2O3. The effect of magnetic field on diffusion flames was observed clearly and the color of the flame also became brighter indicating the increase in the flame intensity. The temperature increase at different locations in the flame was between 20 - 25˚C. The magnetic properties of the iron oxide particles formed were investigated using a Super conducting Quantum Interference Device (SQUID) magnetometer. It was observed that the magnetic properties such as Coercivity, Susceptibility and Permeability favor in magnetic storage devices when a magnetic field was applied. Thus, the effects of the application of external magnetic field on Fe(CO) 5 ¨C CO air diffusion flame are studied

    Unconventional aspects of electronic transport in delafossite oxides

    Full text link
    The electronic transport properties of the delafossite oxides ABO2_2 are usually understood in terms of two well separated entities, namely, the triangular A+^+ and (BO2_2)^- layers. Here we review several cases among this extensive family of materials where the transport depends on the interlayer coupling and displays unconventional properties. We review the doped thermoelectrics based on CuRhO2_2 and CuCrO2_2, which show a high-temperature recovery of Fermi-liquid transport exponents, as well as the highly anisotropic metals PdCoO2_2, PtCoO2_2 and PdCrO2_2 where the sheer simplicity of the Fermi surface leads to unconventional transport. We present some of the theoretical tools that have been used to investigate these transport properties and review what can and cannot be learned from the extensive set of electronic structure calculations that have been performed.Comment: 35 pages, 19 figure

    Bose-Einstein condensation of strongly correlated electrons and phonons in cuprate superconductors

    Full text link
    The long-range Froehlich electron-phonon interaction has been identified as the most essential for pairing in high-temperature superconductors owing to poor screening, as is now confirmed by optical, isotope substitution, recent photoemission and some other measurements. I argue that low energy physics in cuprate superconductors is that of superlight small bipolarons, which are real-space hole pairs dressed by phonons in doped charge-transfer Mott insulators. They are itinerant quasiparticles existing in the Bloch states at low temperatures as also confirmed by continuous-time quantum Monte-Carlo algorithm (CTQMC) fully taking into account realistic Coulomb and long-range Froehlich interactions. Here I suggest that a parameter-free evaluation of Tc, unusual upper critical fields, the normal state Nernst effect, diamagnetism, the Hall-Lorenz numbers and giant proximity effects strongly support the three-dimensional (3D) Bose-Einstein condensation of mobile small bipolarons with zero off-diagonal order parameter above the resistive critical temperature Tc at variance with phase fluctuation scenarios of cuprates.Comment: 35 pages, 10 figures, to appear in the special volume of Journal of Physics: Condensed Matte
    corecore