12,750 research outputs found

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Vision and Learning for Deliberative Monocular Cluttered Flight

    Full text link
    Cameras provide a rich source of information while being passive, cheap and lightweight for small and medium Unmanned Aerial Vehicles (UAVs). In this work we present the first implementation of receding horizon control, which is widely used in ground vehicles, with monocular vision as the only sensing mode for autonomous UAV flight in dense clutter. We make it feasible on UAVs via a number of contributions: novel coupling of perception and control via relevant and diverse, multiple interpretations of the scene around the robot, leveraging recent advances in machine learning to showcase anytime budgeted cost-sensitive feature selection, and fast non-linear regression for monocular depth prediction. We empirically demonstrate the efficacy of our novel pipeline via real world experiments of more than 2 kms through dense trees with a quadrotor built from off-the-shelf parts. Moreover our pipeline is designed to combine information from other modalities like stereo and lidar as well if available

    How do neural networks see depth in single images?

    Full text link
    Deep neural networks have lead to a breakthrough in depth estimation from single images. Recent work often focuses on the accuracy of the depth map, where an evaluation on a publicly available test set such as the KITTI vision benchmark is often the main result of the article. While such an evaluation shows how well neural networks can estimate depth, it does not show how they do this. To the best of our knowledge, no work currently exists that analyzes what these networks have learned. In this work we take the MonoDepth network by Godard et al. and investigate what visual cues it exploits for depth estimation. We find that the network ignores the apparent size of known obstacles in favor of their vertical position in the image. Using the vertical position requires the camera pose to be known; however we find that MonoDepth only partially corrects for changes in camera pitch and roll and that these influence the estimated depth towards obstacles. We further show that MonoDepth's use of the vertical image position allows it to estimate the distance towards arbitrary obstacles, even those not appearing in the training set, but that it requires a strong edge at the ground contact point of the object to do so. In future work we will investigate whether these observations also apply to other neural networks for monocular depth estimation.Comment: Submitte

    Monocular Vision as a Range Sensor

    Get PDF
    One of the most important abilities for a mobile robot is detecting obstacles in order to avoid collisions. Building a map of these obstacles is the next logical step. Most robots to date have used sensors such as passive or active infrared, sonar or laser range finders to locate obstacles in their path. In contrast, this work uses a single colour camera as the only sensor, and consequently the robot must obtain range information from the camera images. We propose simple methods for determining the range to the nearest obstacle in any direction in the robot’s field of view, referred to as the Radial Obstacle Profile. The ROP can then be used to determine the amount of rotation between two successive images, which is important for constructing a 360º view of the surrounding environment as part of map construction

    An Innovative Mission Management System for Fixed-Wing UAVs

    Get PDF
    This paper presents two innovative units linked together to build the main frame of a UAV Mis- sion Management System. The first unit is a Path Planner for small UAVs able to generate optimal paths in a tridimensional environment, generat- ing flyable and safe paths with the lowest com- putational effort. The second unit is the Flight Management System based on Nonlinear Model Predictive Control, that tracks the reference path and exploits a spherical camera model to avoid unpredicted obstacles along the path. The control system solves on-line (i.e. at each sampling time) a finite horizon (state horizon) open loop optimal control problem with a Genetic Algorithm. This algorithm finds the command sequence that min- imizes the tracking error with respect to the ref- erence path, driving the aircraft far from sensed obstacles and towards the desired trajectory

    Autonomous Boat Control Software Design Using Model-Based Systems Engineering

    Get PDF
    While there is considerable buzz about self-driving cars, self-driving boats are actually more fully developed. The Boat Hardware Control Platform Team was tasked with developing a fleet of small autonomous boats that travel to a destination while avoiding obstacles and staying in formation. The author’s specific task was to develop software used by the boats to detect obstacles and plan a route to a destination. This was done using a method inspired by self-driving cars, which shows promise, but is still being tested at the time of writing. The entire project incorporated model-based systems engineering, which proved to be useful

    Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles

    Get PDF
    A leader-follower formation driving algorithm developed for control of heterogeneous groups of unmanned micro aerial and ground vehicles stabilized under a top-view relative localization is presented in this paper. The core of the proposed method lies in a novel avoidance function, in which the entire 3D formation is represented by a convex hull projected along a desired path to be followed by the group. Such a representation of the formation provides non-collision trajectories of the robots and respects requirements of the direct visibility between the team members in environment with static as well as dynamic obstacles, which is crucial for the top-view localization. The algorithm is suited for utilization of a simple yet stable visual based navigation of the group (referred to as GeNav), which together with the on-board relative localization enables deployment of large teams of micro-scale robots in environments without any available global localization system. We formulate a novel Model Predictive Control (MPC) based concept that enables to respond to the changing environment and that provides a robust solution with team members' failure tolerance included. The performance of the proposed method is verified by numerical and hardware experiments inspired by reconnaissance and surveillance missions
    corecore