3 research outputs found

    Studies of disk arrays tolerating two disk failures and a proposal for a heterogeneous disk array

    Get PDF
    There has been an explosion in the amount of generated data in the past decade. Online access to these data is made possible by large disk arrays, especially in the RAID (Redundant Array of Independent Disks) paradigm. According to the RAID level a disk array can tolerate one or more disk failures, so that the storage subsystem can continue operating with disk failure(s). RAID 5 is a single disk failure tolerant array which dedicates the capacity of one disk to parity information. The content on the failed disk can be reconstructed on demand and written onto a spare disk. However, RAID5 does not provide enough protection for data since the data loss may occur when there is a media failure (unreadable sectors) or a second disk failure during the rebuild process. Due to the high cost of downtime in many applications, two disk failure tolerant arrays, such as RAID6 and EVENODD, have become popular. These schemes use 2/N of the capacity of the array for redundant information in order to tolerate two disk failures. RM2 is another scheme that can tolerate two disk failures, with slightly higher redundancy ratio. However, the performance of these two disk failure tolerant RAID schemes is impaired, since there are two check disks to be updated for each write request. Therefore, their performance, especially when there are disk failure(s), is of interest. In the first part of the dissertation, the operations for the RAID5, RAID6, EVENODD and RM2 schemes are described. A cost model is developed for these RAID schemes by analyzing the operations in various operating modes. This cost model offers a measure of the volume of data being transmitted, and provides adevice-independent comparison of the efficiency of these RAID schemes. Based on this cost model, the maximum throughput of a RAID scheme can be obtained given detailed disk characteristic and RAID configuration. Utilizing M/G/1 queuing model and other favorable modeling assumptions, a queuing analysis to obtain the mean read response time is described. Simulation is used to validate analytic results, as well as to evaluate the RAID systems in analytically intractable cases. The second part of this dissertation describes a new disk array architecture, namely Heterogeneous Disk Array (HDA). The HDA is motivated by a few observations of the trends in storage technology. The HDA architecture allows a disk array to have two forms of heterogeneity: (1) device heterogeneity, i.e., disks of different types can be incorporated in a single HDA; and (2) RAID level heterogeneity, i.e., various RAID schemes can coexist in the same array. The goal of this architecture is (1) utilizing the extra resource (i.e. bandwidth and capacity) introduced by new disk drives in an automated and efficient way; and (2) using appropriate RAID levels to meet the varying availability requirements for different applications. In HDA, each new object is associated with an appropriate RAID level and the allocation is carried out in a way to keep disk bandwidth and capacity utilizations balanced. Design considerations for the data structures of HDA metadata are described, followed by the actual design of the data structures and flowcharts for the most frequent operations. Then a data allocation algorithm is described in detail. Finally, the HDA architecture is prototyped based on the DASim simulation toolkit developed at NJIT and simulation results of an HDA with two RAID levels (RAID 1 and RAIDS) are presented

    DISK DESIGN-SPACE EXPLORATION IN TERMS OF SYSTEM-LEVEL PERFORMANCE, POWER, AND ENERGY CONSUMPTION

    Get PDF
    To make the common case fast, most studies focus on the computation phase of applications in which most instructions are executed. However, many programs spend significant time in the I/O intensive phase due to the I/O latency. To obtain a system with more balanced phases, we require greater insight into the effects of the I/O configurations to the entire system in both performance and power dissipation domains. Due to lack of public tools with the complete picture of the entire memory hierarchy, we developed SYSim. SYSim is a complete-system simulator aiming at complete memory hierarchy studies in both performance and power consumption domains. In this dissertation, we used SYSim to investigate the system-level impacts of several disk enhancements and technology improvements to the detailed interaction in memory hierarchy during the I/O-intensive phase. The experimental results are reported in terms of both total system performance and power/energy consumption. With SYSim, we conducted the complete-system experiments and revealed intriguing behaviors including, but not limited to, the following: During the I/O intensive phase which consists of both disk reads and writes, the average system CPI tracks only average disk read response time, and not overall average disk response time, which is the widely-accepted metric in disk drive research. In disk read-dominating applications, Disk Prefetching is more important than increasing the disk RPM. On the other hand, in applications with both disk reads and writes, the disk RPM matters. The execution time can be improved to an order of magnitude by applying some disk enhancements. Using disk caching and prefetching can improve the performance by the factor of 2, and write-buffering can improve the performance by the factor of 10. Moreover, using disk caching/prefetching and the write-buffering techniques in conjunction can improve the total system performance by at least an order of magnitude. Increasing the disk RPM and the number of disks in RAID disk system also have an impressive improvement over the total system performance. However, employing such techniques requires careful consideration for trade-offs in power/energy consumption

    Improving Storage with Stackable Extensions

    Get PDF
    Storage is a central part of computing. Driven by exponentially increasing content generation rate and a widening performance gap between memory and secondary storage, researchers are in the perennial quest to push for further innovation. This has resulted in novel ways to “squeeze” more capacity and performance out of current and emerging storage technology. Adding intelligence and leveraging new types of storage devices has opened the door to a whole new class of optimizations to save cost, improve performance, and reduce energy consumption. In this dissertation, we first develop, analyze, and evaluate three storage exten- sions. Our first extension tracks application access patterns and writes data in the way individual applications most commonly access it to benefit from the sequential throughput of disks. Our second extension uses a lower power flash device as a cache to save energy and turn off the disk during idle periods. Our third extension is designed to leverage the characteristics of both disks and solid state devices by placing data in the most appropriate device to improve performance and save power. In developing these systems, we learned that extending the storage stack is a complex process. Implementing new ideas incurs a prolonged and cumbersome de- velopment process and requires developers to have advanced knowledge of the entire system to ensure that extensions accomplish their goal without compromising data recoverability. Futhermore, storage administrators are often reluctant to deploy specific storage extensions without understanding how they interact with other ex- tensions and if the extension ultimately achieves the intended goal. We address these challenges by using a combination of approaches. First, we simplify the stor- age extension development process with system-level infrastructure that implements core functionality commonly needed for storage extension development. Second, we develop a formal theory to assist administrators deploy storage extensions while guaranteeing that the given high level goals are satisfied. There are, however, some cases for which our theory is inconclusive. For such scenarios we present an experi- mental methodology that allows administrators to pick an extension that performs best for a given workload. Our evaluation demostrates the benefits of both the infrastructure and the formal theory
    corecore