2 research outputs found

    The Design and Implementation of a Scalable DL Benchmarking Platform

    Full text link
    The current Deep Learning (DL) landscape is fast-paced and is rife with non-uniform models, hardware/software (HW/SW) stacks, but lacks a DL benchmarking platform to facilitate evaluation and comparison of DL innovations, be it models, frameworks, libraries, or hardware. Due to the lack of a benchmarking platform, the current practice of evaluating the benefits of proposed DL innovations is both arduous and error-prone - stifling the adoption of the innovations. In this work, we first identify 1010 design features which are desirable within a DL benchmarking platform. These features include: performing the evaluation in a consistent, reproducible, and scalable manner, being framework and hardware agnostic, supporting real-world benchmarking workloads, providing in-depth model execution inspection across the HW/SW stack levels, etc. We then propose MLModelScope, a DL benchmarking platform design that realizes the 1010 objectives. MLModelScope proposes a specification to define DL model evaluations and techniques to provision the evaluation workflow using the user-specified HW/SW stack. MLModelScope defines abstractions for frameworks and supports board range of DL models and evaluation scenarios. We implement MLModelScope as an open-source project with support for all major frameworks and hardware architectures. Through MLModelScope's evaluation and automated analysis workflows, we performed case-study analyses of 3737 models across 44 systems and show how model, hardware, and framework selection affects model accuracy and performance under different benchmarking scenarios. We further demonstrated how MLModelScope's tracing capability gives a holistic view of model execution and helps pinpoint bottlenecks

    DLSpec: A Deep Learning Task Exchange Specification

    Full text link
    Deep Learning (DL) innovations are being introduced at a rapid pace. However, the current lack of standard specification of DL tasks makes sharing, running, reproducing, and comparing these innovations difficult. To address this problem, we propose DLSpec, a model-, dataset-, software-, and hardware-agnostic DL specification that captures the different aspects of DL tasks. DLSpec has been tested by specifying and running hundreds of DL tasks
    corecore