2,791 research outputs found

    Practical Datatype Specializations with Phantom Types and Recursion Schemes

    Get PDF
    Datatype specialization is a form of subtyping that captures program invariants on data structures that are expressed using the convenient and intuitive datatype notation. Of particular interest are structural invariants such as well-formedness. We investigate the use of phantom types for describing datatype specializations. We show that it is possible to express statically-checked specializations within the type system of Standard ML. We also show that this can be done in a way that does not lose useful programming facilities such as pattern matching in case expressions.Comment: 25 pages. Appeared in the Proc. of the 2005 ACM SIGPLAN Workshop on M

    A Quantum Computational Learning Algorithm

    Full text link
    An interesting classical result due to Jackson allows polynomial-time learning of the function class DNF using membership queries. Since in most practical learning situations access to a membership oracle is unrealistic, this paper explores the possibility that quantum computation might allow a learning algorithm for DNF that relies only on example queries. A natural extension of Fourier-based learning into the quantum domain is presented. The algorithm requires only an example oracle, and it runs in O(sqrt(2^n)) time, a result that appears to be classically impossible. The algorithm is unique among quantum algorithms in that it does not assume a priori knowledge of a function and does not operate on a superposition that includes all possible states.Comment: This is a reworked and improved version of a paper originally entitled "Quantum Harmonic Sieve: Learning DNF Using a Classical Example Oracle

    Total Domishold Graphs: a Generalization of Threshold Graphs, with Connections to Threshold Hypergraphs

    Full text link
    A total dominating set in a graph is a set of vertices such that every vertex of the graph has a neighbor in the set. We introduce and study graphs that admit non-negative real weights associated to their vertices such that a set of vertices is a total dominating set if and only if the sum of the corresponding weights exceeds a certain threshold. We show that these graphs, which we call total domishold graphs, form a non-hereditary class of graphs properly containing the classes of threshold graphs and the complements of domishold graphs, and are closely related to threshold Boolean functions and threshold hypergraphs. We present a polynomial time recognition algorithm of total domishold graphs, and characterize graphs in which the above property holds in a hereditary sense. Our characterization is obtained by studying a new family of hypergraphs, defined similarly as the Sperner hypergraphs, which may be of independent interest.Comment: 19 pages, 1 figur
    • …
    corecore