61,266 research outputs found

    High accuracy semidefinite programming bounds for kissing numbers

    Get PDF
    The kissing number in n-dimensional Euclidean space is the maximal number of non-overlapping unit spheres which simultaneously can touch a central unit sphere. Bachoc and Vallentin developed a method to find upper bounds for the kissing number based on semidefinite programming. This paper is a report on high accuracy calculations of these upper bounds for n <= 24. The bound for n = 16 implies a conjecture of Conway and Sloane: There is no 16-dimensional periodic point set with average theta series 1 + 7680q^3 + 4320q^4 + 276480q^5 + 61440q^6 + ...Comment: 7 pages (v3) new numerical result in Section 4, to appear in Experiment. Mat

    Experimental study of energy-minimizing point configurations on spheres

    Full text link
    In this paper we report on massive computer experiments aimed at finding spherical point configurations that minimize potential energy. We present experimental evidence for two new universal optima (consisting of 40 points in 10 dimensions and 64 points in 14 dimensions), as well as evidence that there are no others with at most 64 points. We also describe several other new polytopes, and we present new geometrical descriptions of some of the known universal optima.Comment: 41 pages, 12 figures, to appear in Experimental Mathematic

    Three-point bounds for energy minimization

    Full text link
    Three-point semidefinite programming bounds are one of the most powerful known tools for bounding the size of spherical codes. In this paper, we use them to prove lower bounds for the potential energy of particles interacting via a pair potential function. We show that our bounds are sharp for seven points in RP^2. Specifically, we prove that the seven lines connecting opposite vertices of a cube and of its dual octahedron are universally optimal. (In other words, among all configurations of seven lines through the origin, this one minimizes energy for all potential functions that are completely monotonic functions of squared chordal distance.) This configuration is the only known universal optimum that is not distance regular, and the last remaining universal optimum in RP^2. We also give a new derivation of semidefinite programming bounds and present several surprising conjectures about them.Comment: 30 page

    Probabilistic modal {\mu}-calculus with independent product

    Full text link
    The probabilistic modal {\mu}-calculus is a fixed-point logic designed for expressing properties of probabilistic labeled transition systems (PLTS's). Two equivalent semantics have been studied for this logic, both assigning to each state a value in the interval [0,1] representing the probability that the property expressed by the formula holds at the state. One semantics is denotational and the other is a game semantics, specified in terms of two-player stochastic parity games. A shortcoming of the probabilistic modal {\mu}-calculus is the lack of expressiveness required to encode other important temporal logics for PLTS's such as Probabilistic Computation Tree Logic (PCTL). To address this limitation we extend the logic with a new pair of operators: independent product and coproduct. The resulting logic, called probabilistic modal {\mu}-calculus with independent product, can encode many properties of interest and subsumes the qualitative fragment of PCTL. The main contribution of this paper is the definition of an appropriate game semantics for this extended probabilistic {\mu}-calculus. This relies on the definition of a new class of games which generalize standard two-player stochastic (parity) games by allowing a play to be split into concurrent subplays, each continuing their evolution independently. Our main technical result is the equivalence of the two semantics. The proof is carried out in ZFC set theory extended with Martin's Axiom at an uncountable cardinal

    Facilitating the driver detection of road surface type by selective manipulation of the steering-wheel acceleration signal

    Get PDF
    Copyright @ 2012 by Institution of Mechanical Engineers.Previous research has investigated the possibility of facilitating the driver detection of road surface type by means of selective manipulation of the steering-wheel acceleration signal. In previous studies a selective increase in acceleration amplitude has been found to facilitate road-surface-type detection, as has selective manipulation of the individual transient events which are present in the signal. The previous research results have been collected into a first guideline for the optimization of the steering-wheel acceleration signal, and the guideline has been tested in the current study. The test stimuli used in the current study were ten steering-wheel acceleration-time histories which were selected from an extensive database of road test measurements performed by the research group. The time histories, which were all from midsized European automobiles and European roads, were selected such that the widest possible operating envelope could be achieved in terms of the r.m.s. value of the steering acceleration, the kurtosis, the power spectral density function, and the number of transient events present in the signal. The time histories were manipulated by means of the mildly non-stationary mission synthesis algorithm in order to increase, by a factor of 2, both the number and the size of the transient events contained within the frequency interval from 20 Hz to 60Hz. The ensemble, composed of both the unmanipulated and the manipulated time histories, was used to perform a laboratory-based detection task with 15 participants, who were presented the individual stimuli in random order. The participants were asked to state, by answering 'yes' or 'no', whether each stimulus was considered to be from the road surface that was displayed in front of them by means of a large photograph on a board. The results suggest that the selectively manipulated steering-wheel acceleration stimuli produced improved detection for eight of the ten road surface types which were tested, with a maximum improvement of 14 per cent in the case of the broken road surface. The selective manipulation did lead, however, to some degradation in detection for the motorway road stimulus and for the noise road stimulus, thus suggesting that the current guideline is not universally optimal for all road surfaces

    New multicategory boosting algorithms based on multicategory Fisher-consistent losses

    Get PDF
    Fisher-consistent loss functions play a fundamental role in the construction of successful binary margin-based classifiers. In this paper we establish the Fisher-consistency condition for multicategory classification problems. Our approach uses the margin vector concept which can be regarded as a multicategory generalization of the binary margin. We characterize a wide class of smooth convex loss functions that are Fisher-consistent for multicategory classification. We then consider using the margin-vector-based loss functions to derive multicategory boosting algorithms. In particular, we derive two new multicategory boosting algorithms by using the exponential and logistic regression losses.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS198 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore