1,209 research outputs found

    The Critical Exponent is Computable for Automatic Sequences

    Full text link
    The critical exponent of an infinite word is defined to be the supremum of the exponent of each of its factors. For k-automatic sequences, we show that this critical exponent is always either a rational number or infinite, and its value is computable. Our results also apply to variants of the critical exponent, such as the initial critical exponent of Berthe, Holton, and Zamboni and the Diophantine exponent of Adamczewski and Bugeaud. Our work generalizes or recovers previous results of Krieger and others, and is applicable to other situations; e.g., the computation of the optimal recurrence constant for a linearly recurrent k-automatic sequence.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Enumeration and Decidable Properties of Automatic Sequences

    Full text link
    We show that various aspects of k-automatic sequences -- such as having an unbordered factor of length n -- are both decidable and effectively enumerable. As a consequence it follows that many related sequences are either k-automatic or k-regular. These include many sequences previously studied in the literature, such as the recurrence function, the appearance function, and the repetitivity index. We also give some new characterizations of the class of k-regular sequences. Many results extend to other sequences defined in terms of Pisot numeration systems

    Automatic sets of rational numbers

    Full text link
    The notion of a k-automatic set of integers is well-studied. We develop a new notion - the k-automatic set of rational numbers - and prove basic properties of these sets, including closure properties and decidability.Comment: Previous version appeared in Proc. LATA 2012 conferenc

    Periodicity, repetitions, and orbits of an automatic sequence

    Get PDF
    We revisit a technique of S. Lehr on automata and use it to prove old and new results in a simple way. We give a very simple proof of the 1986 theorem of Honkala that it is decidable whether a given k-automatic sequence is ultimately periodic. We prove that it is decidable whether a given k-automatic sequence is overlap-free (or squareefree, or cubefree, etc.) We prove that the lexicographically least sequence in the orbit closure of a k-automatic sequence is k-automatic, and use this last result to show that several related quantities, such as the critical exponent, irrationality measure, and recurrence quotient for Sturmian words with slope alpha, have automatic continued fraction expansions if alpha does.Comment: preliminary versio
    • …
    corecore